【題目】某商場試銷一種成本為每件元的服裝,規定試銷期間銷售單價不低于成本單價,且獲利不得高于
,經試銷發現,銷售量
(件)與銷售單價
(元)符合一次函數
,且
時,
;
時,
.
求一次函數
的表達式;
若該商場獲得利潤為
元,試寫出利潤
與銷售單價
之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是反比例函數y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經過點B的反比例函數圖象的表達式為( )
A. y=﹣ B. y=
C. y=﹣
D. y=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,長為4cm的線段DE在邊AC上,且點D與點A重合,點F是DE的中點,線段DE從點A出發,沿AC方向向點C勻速運動,直到點E與點C重合,速度1cm/s。過點F作PF⊥AC,交AB于點P,過點P作PQ//AC,交BC于點Q,連接PD,PE,QE,設線段DE的運動時間為t(s).(0≤t≤6)
(1)請分別用含有t的代數式表示線段PF、BQ
(2)當t為何值時,四邊形PFCQ為正方形?
(3)設四邊形PDEQ的面積為y(cm)請求出y與t之間的函數關系式,并求出當t為何值時,四邊形PDEQ的面積最大,最大是多少?
(4)是否存在某一時刻t,使得EP平分∠AEQ?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。
A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1
C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2∶1,在溫室內,沿前側內墻保留3 m的空地,其他三側內墻各保留1 m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區域的面積是288 m2?
解:設矩形蔬菜種植區域的寬為x_m,則長為2xm,
根據題意,得x·2x=288.
解這個方程,得x1=-12(不合題意,舍去),x2=12,
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當溫室的長為28 m,寬為14 m時,矩形蔬菜種植區域的面積是288 m2.
我的結果也正確!
小明發現他解答的結果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.
結果為何正確呢?
(1)請指出小明解答中存在的問題,并補充缺少的過程:變化一下會怎樣?
(2)如圖,矩形A′B′C′D′在矩形ABCD的內部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,連接DE.過點A作AF⊥DE,垂足為F,⊙O經過點C、D、F,與AD相交于點G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,
設剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)
(1)填空:EF= .cm,GH= .cm;(用含x的代數式表示)
(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com