【題目】為了改善小區環境,某小區決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,其他三邊用總長為60米柵欄圍。ㄈ鐖D),若設綠化帶的BC邊為x米,綠化帶的面積為y平方米。
(1)求y 關于x 的函數關系式,并寫出自變量x 的取值范圍:
(2)是否存在綠化帶BC的長的某個值,使得綠化帶的面積為450平方米?若存在,請求出這個值;若不存在,請說明理由。
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點,點
.已知拋物線
(
是常數),頂點為
.
(Ⅰ)當拋物線經過點時,求頂點
的坐標;
(Ⅱ)若點在
軸下方,當
時,求拋物線的解析式;
(Ⅲ) 無論取何值,該拋物線都經過定點
.當
時,求拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A以1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O以1厘米/秒的速度移動.如果P、Q同時出發,用t(秒)表示移動的時間(0≤t≤6),那么,當t為何值時,△POQ與△AOB相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場將進價為2000元的冰箱以2400元售出,平均毎天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調査表明:這種冰箱的售價毎降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價元,商場每天銷售這種冰箱的利潤為
元,請寫出
與
間的函數表達式;(不要求寫出自變量的取值范圍)
(2)商場要想在這種冰箱銷售中毎天盈利4800元,同時又要使百姓得到實惠,毎臺冰箱應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉60°,得到正方形DE′F′G′,此時點G′在AC上,連接CE′,則CE′+CG′=( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的方程y=- (x+2)(x-m) (m>0)與x軸交于B、C,與y軸交于點E,且點B在點C的左側,拋物線還經過點P(2,2)
(1)求該拋物線的解析式
(2)在(1)的條件下,求△BCE的面積
(3)在(1)的條件下,在拋物線的對稱軸上找一點H,使EH+BH的值最小。求出點H的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃,設花圃的一邊AB為xm,面積為ym2.
(1)求y與x的函數關系式;
(2)如果要圍成面積為48m2的花圃,AB的長是多少?
(3)能圍成比48m2更大的花圃嗎?如果能,請求出最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com