【題目】如圖,矩形中,
,
,過點
、
作相距為2的平行線段
,
,分別交
,
于點
,
,則
的長是__________.
【答案】
【解析】
首先,過F作FH⊥AE于H,根據矩形的性質得到AB=CD,AB∥CD,推出四邊形AECF是平行四邊形;根據平行四邊形的性質得到AF=CE,根據相似三角形的性質得到;進而得到AE=AF,列方程即可求解即可解答本題.
解:過F作FH⊥AE于H,
∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD.
∵AE∥CF,
∴四邊形AECF是平行四邊形,
∴AF=CE,
∴DE=BF,
∴AF=3﹣DE,
∴AE=.
∵∠FHA=∠D=∠DAF=90°,
∴∠AFH+∠HAF=∠DAE+∠FAH=90°,
∴∠DAE=∠AFH,
∴△ADE∽△FHA,
∴AEAF=ADFH,
∴AE=AF,
∴=3-DE,
∴DE=.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應的函數關系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發向B勻速移動,設它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當t=時,判斷點P是否在直線ME上,并說明理由;
②設以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明同學將五個正方形按圖1所示位置擺放后發現中間空白處是邊長為3的小正方形,根據這個信息,小明設右下角的最小的正方形邊長為x:
(1)則右上角最大的正方形邊長為 ;
(2)求拼成的大長方形的長和寬分別為多少?
(3)小明又將四個長為a,寬為b的小長方形放到圖2中的長方形中,得到如圖2所示的圖形,則圖形Ⅰ和圖形Ⅱ的周長之和是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月初某地豬肉價格大幅度下調,下調后每千克豬肉的價格是原價格的,原來用120元買到的豬肉下調后可多買2kg.4月中旬豬肉價格開始回升,經過兩個月后,豬肉價格上調為每千克28.8元.
(1)求4月初豬肉價格下調后變為每千克多少元.
(2)求5、6月份豬肉價格的月平均增長率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正比例函數的圖像與反比例函數
的圖像交于
、
兩點,過點
作
垂直
軸于點
,連結
.若
的面積為2.
(1)求的值;
(2)直接寫出:①點坐標____________;點
坐標_____________;②當
時,
的取值范圍__________________;
(3)軸上是否存在一點
,使
為直角三角形?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一個由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m及5m內,燈就會自動發光,小明身高1.5m,他走到離墻_______的地方燈剛好發光.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新華文具用品店最近購進了一批鋼筆,進價為每支6元,為了合理定價,在銷售前4天試行機動價格,賣出時每支以10元為標準,超過10元的部分記為正,不足10元的部分記為負。文具店記錄了這四天該鋼筆的售價情況和售出情況,如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
每支價格相對標準價格(元) | +1 | 0 | -1 | -2 |
售出支數(支) | 12 | 15 | 32 | 33 |
(1)填空:這四天中賺錢最多的是第______天,這天賺了______元錢;
(2)求新華文具用品店這四天出售這種鋼筆一共賺了多少錢;
(3)新華文具用品店準備用這四天賺的錢全部購進這種鋼筆,進價仍為每支6元為了促銷這種鋼筆,每只鋼筆的售價在10元的基礎上打九折,本次購進的這種鋼筆全部售出后共賺了多少錢?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com