【題目】在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現,分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.
(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;
(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?
(3)比賽規定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c(b,c均是常數)經過點O(0,0),A(4,4
),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.
(1)求該拋物線的解析式和頂點坐標;
(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.
①若點O關于直線QB的對稱點為點C,當點C恰好在直線l上時,求點Q的坐標;
②若點O關于直線QB的對稱點為點D,當線段AD的長最短時,求點Q的坐標(直接寫出答案即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于等腰三角形,有以下說法:
(1)有一個角為的等腰三角形一定是銳角三角形
(2)等腰三角形兩邊的中線一定相等
(3)兩個等腰三角形,若一腰以及該腰上的高對應相等,則這兩個等腰三角形全等
(4)等腰三角形兩底角的平分線的交點到三邊距離相等
其中,正確說法的個數為( )
A.個B.
個C.
個D.
個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;
(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形在平面直角坐標系內,其中點
,點
,點
和點
分別位于線段
,
上,將
沿
對折,恰好能使點
與點
重合.若
軸上有一點
,能使
為等腰三角形,則點
的坐標為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情景:如圖1,在同一平面內,點和點
分別位于一塊直角三角板
的兩條直角邊
,
上,點
與點
在直線
的同側,若點
在
內部,試問
,
與
的大小是否滿足某種確定的數量關系?
(1)特殊探究:若,則
_________度,
________度,
_________度;
(2)類比探索:請猜想與
的關系,并說明理由;
(3)類比延伸:改變點的位置,使點
在
外,其它條件都不變,判斷(2)中的結論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出
,
與
滿足的數量關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(
,y2)是拋物線上兩點,則
y1>y2.其中說法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com