【題目】如圖,在△ABC中,∠B=90°,∠A=30°,AC=2.將△ABC繞點C順時針旋轉120°得△A′B′C.
(1)求作:△A′B′C;
(2)求點B旋轉經過的路徑長;
(3)求線段BB′的長;
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F,H為CG的中點,連接DE,EH,DH,FH.下列結論中結論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國慶70周年前夕,網店銷售 三種規格的手搖小國旗,其部分相關信息如下表:
型號 | 規格(mm) | 批發價(元/面) | 建議零售價(元/面) |
大號 | 45x30 | 2.00 | |
中號 | 28x20 | 1.50 | |
小號 | 22x14 |
已知大號小國旗比中號的批發價貴0.3元,小號小國旗比中號的批發價便宜0.1元某小商品零售商店,第一次用 380元購進了一批大號小國旗,緊接著又用780元購進了第二 批中號小國旗,第二批的數量是第一批的3倍.
(1)求三種型號小國旗的批發價分別是多少元?
(2)該商店很快又購進了第三批小號小國旗1200面.如果三批小國旗全部按網店建議零 售價銷售完后,該零售商店獲利不少于1980 元,那么小號小國旗的建議零售價至少 為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+
x+
與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.
(1)求線段DE的長度;
(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;
(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC和△DEC都是等邊三角形,D是BC延長線上一點,AD與BE相交于點P,AC、BE相交于點M,AD,CE相交于點N,則下列五個結論:①AD=BE;②AP=BM;③∠APM=60°;④△CMN是等邊三角形;⑤連接CP,則CP平分∠BPD,其中,正確的是_____.(填寫序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶由于丘陵、山地的特殊地勢,被網友們稱為”3D魔幻城市”.在重慶,你有時會看到馬路上面是房屋、馬路下面也是房屋;你從底樓出來,看到門口是一條公路,等你坐電梯上到頂樓,發現還是公路.小王家就在這樣的一棟樓里:他從家里底樓出來會看到一條斜坡公路DC,已知∠DCE=30°,他從樓底B出發,沿著公路到達C處后繼續沿著斜坡前進到達D處,共走了27米,然后他又沿著斜坡DA前進到達了頂樓A處,已知DA與水平線夾角為30°,大樓AB高
米,假設BC、CD、AD、AB在同一平面內,則斜坡CD的長度約為( )(已知:
≈1.73)
A.10.3B.10.4C.9D.9.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉90°得到△AB′C′.
(1)在正方形網格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區域的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com