【題目】如圖,△ABC中,點E在BC邊上.AE=AB,將線段AC繞點A旋轉到AF的位置.使得∠CAF=∠BAE.連接EF,EF與AC交于點G.
(1)求證:EF =BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度數.
【答案】(1)詳見解析;(2)78°.
【解析】
(1)由旋轉的性質可得AC=AF,利用SAS證明△ABC≌△AEF,根據全等三角形的對應邊相等即可得出EF=BC;
(2)根據等腰三角形的性質以及三角形內角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根據三角形外角的性質即可求出∠FGC=∠FAG+∠F=78°.
(1)證明:∵∠CAF=∠BAE,
∴∠BAC=∠EAF.
∵將線段AC繞A點旋轉到AF的位置,
∴AC=AF.
在△ABC與△AEF中,
,
∴△ABC≌△AEF(SAS),
∴EF=BC;
(2)解:∵AB=AE,∠ABC=65°,
∴∠BAE=180°-65°×2=50°,
∴∠FAG=∠BAE=50°.
∵△ABC≌△AEF,
∴∠F=∠C=28°,
∴∠FGC=∠FAG+∠F=50°+28°=78°.
科目:初中數學 來源: 題型:
【題目】重慶市旅游文化商店自制了一款文化衫,每件成本價為20元,每天銷售150件:
(1)若要每天的利潤不低于2250元,則銷售單價至少為多少元?
(2)為了回饋廣大游客,同時也為了提高這種文化衫的認知度,商店決定在“五一”節當天開展促銷活動,若銷售單價在(1)中的最低銷售價的基礎上再降低m%,則日銷售量可以在150件基礎上增加
m件,結果當天的銷售額達到5670元;要使銷售量盡可能大,求出m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=8,點P是BC中點,點E、F是邊CD上的任意兩點,且EF=2,當四邊形APEF的周長最小時,則DF的長為( 。
A. 2 B. 4 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△BDE中,∠BDE=90°,BD=4,點D的坐標是(5,0),∠BDO=15°,將△BDE旋轉到△ABC的位置,點C在BD 上,則旋轉中心的坐標為_______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠A=36°,將△ABC繞平面中的某一點D按順時針方向旋轉一定角度得到△
.
(1)若旋轉后的圖形如圖所示,請在圖中用尺規作出點D,請保留作圖痕跡,不要求寫作法;
(2)若將△ABC按順時針方向旋轉到△
的旋轉角度為
(0°<
<180°),且AC⊥
,直接寫出旋轉角度
的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(
,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發沿邊AC向點C以1cm/s的速度移動,點Q從C點出發沿CB邊向點B以2cm/s的速度移動.
(1)如果P、Q同時出發,幾秒鐘后,可使△PCQ的面積為8cm2?
(2)點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個口袋中有3個大小相同的小球,球面上分別寫有數字1、2、3.從袋中隨機地摸出一個小球,記錄下數字后放回,再隨機地摸出一個小球.
(1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數字的所有可能結果;
(2)求兩次摸出的球上的數字和為偶數的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com