【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和B為圓心,以相同的長(大于 AB)為半徑作弧,兩弧相交于點M和N,作直線MN交AB于點D,交BC于點E,連接CD,下列結論錯誤的是( )
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點M在AB邊上,且AM=3,過點M作直線MN與AC邊交于點N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數如表所示,商家用加權平均數來確定什錦糖的單價.
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(元/千克) | 20 | 25 | 30 |
千克數 | 40 | 40 | 20 |
(1)求該什錦糖的單價.
(2)為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,A點坐標為(2,4),B點坐標為(﹣3,﹣2),C點坐標為(3,1).
(1)在圖中畫出△ABC關于y軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)探究:如圖①,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=40°,求∠DEF的度數.
請將下面的解答過程補充完整,并填空(理由或數學式)
解:∵DE∥BC,∴∠DEF= .( )
∵EF∥AB,∴ =∠ABC.( 。
∴∠DEF=∠ABC.(等量代換)
∵∠ABC=40°,∴∠DEF= °.
(2)應用:如圖②,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB的延長線上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=60°,則∠DEF= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1.O),點A第一次跳動至點A1(-1,1).第四次向右跳動5個單位至點A4(3,2),…,依此規律跳動下去,點A第100次跳動至點A100的坐標是( )
A. (50,49) B. (51, 49) C. (50, 50) D. (51, 50)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
我們知道的幾何意義是在數軸上數
對應的點與原點的距離,即
=
,也就是說,
表示在數軸上數
與數0對應的點之間的距離;這個結論可以推廣為
表示在數軸上數
與數
對應的點之間的距離;
例1.解方程||=2.因為在數軸上到原點的距離為2的點對應的數為
,所以方程|
|=2的解為
.
例2.解不等式|-1|>2.在數軸上找出|
-1|=2的解(如圖),因為在數軸上到1對應的點的距離等于2的點對應的數為-1或3,所以方程|
-1|=2的解為
=-1或
=3,因此不等式|
-1|>2的解集為
<-1或
>3.
例3.解方程|-1|+|
+2|=5.由絕對值的幾何意義知,該方程就是求在數軸上到1和-2對應的點的距離之和等于5的點對應的
的值.因為在數軸上1和-2對應的點的距離為3(如圖),滿足方程的
對應的點在1的右邊或-2的左邊.若
對應的點在1的右邊,可得
=2;若
對應的點在-2的左邊,可得
=-3,因此方程|
-1|+|
+2|=5的解是
=2或
=-3.
參考閱讀材料,解答下列問題:
(1)方程|+3|=4的解為 ;
(2)解不等式:|-3|≥5;
(3)解不等式:|-3|+|
+4|≥9
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com