解:(1)BG和CH為相等關系,
如圖1,連接BD,
∵等腰直角三角形ABC,D為AC的中點,
∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,
∵∠EDF=90°,
∴∠ADG+∠GDB=90°,
∴∠BDG+∠BDH=90°,
∴∠ADG=∠HDB,
∴在△ADG和△BDH中,

,
∴△ADG≌△BDH(ASA),
∴AG=BH,
∵AB=BC,
∴BG=HC,
(2)∵等腰直角三角形ABC,D為AC的中點,
∴DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,
∵∠GDH=90°,
∴∠GDB+∠BDH=90°,
∴∠CDH+∠BDH=90°,

∴∠BDG=∠HDC,
∴在△BDG和△CDH中,

,
∵△BDG≌△CDH(ASA),
∴S
四邊形DGBH=S
△BDH+S
△GDB=S
△ABD,
∵DA=DC=DB,BD⊥AC,
∴S
△ABD=

S
△ABC,
∴S
四邊形DGBH=

S
△ABC=4cm
2,
∴在旋轉過程中四邊形GBHD的面積不變,
(3)當三角板DEF旋轉至圖2所示時,(1)的結論仍然成立,
如圖2,連接BD,
∵BD⊥AC,AB⊥BH,ED⊥DF,
∴∠BDG=90°-∠CDG,∠CDH=90°-∠CDG,
∴∠BDG=∠CDH,
∵等腰直角三角形ABC,
∴∠DBC=∠BCD=45°,
∴∠DBG=∠DCH=135°,
∴在△DBG和△DCH中,

,
∴△DBG≌△DCH(ASA),
∴BG=CH.

分析:(1)連接BD,根據等腰直角三角形的性質,得,DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,由∠ADG+∠HDC=90°,∠BDG+∠ADG=90°,推出∠BDG=∠HDC后,結合DB=DC,即可推出△BDG≌△CDH,根據全等三角形的性質可得BG=CH;
(2)首先根據題意求出S
△ABC=8cm
2,然后通過求證△BDH≌△ADG,由(1)的結論,即可推出S
四邊形DGBH=S
△BDH+S
△GDB=S
△ABD,再根據DA=DC=DB,BD⊥AC,推出S
△ABD=

S
△ABC,即得,S
四邊形DGBH=

S
△ABC=4cm
2,便可確定在旋轉過程中四邊形GBHD的面積不變;
(3)連接BD后,首先通過余角的性質推出∠BDG=∠CDH,再根據∠DBC=∠BCD=45°,推出∠DBG=∠DCH=135°,即可推出△DBG和△DCH,便可得BG=CH.
點評:本題主要考查等腰直角三角形的性質、全等三角形的判定及性質、三角形的面積公式、余角的性質等知識點,關鍵在于根據圖形正確的畫出輔助線,利用相關的性質定理求證三角形全等.