【題目】某化肥廠2019年生產氮肥4000噸,現準備通過改進技術提升生產效率,計劃到2021年生產氮肥4840噸.現技術攻關小組按要求給出甲、乙兩種技術改進方案,其中運用甲方案能使每年產量增長的百分率相同,運用乙方案能使每年增長的產量相同.問運用哪一種方案能使2020年氮肥的產量更高?高多少?
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發,以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有四張反面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將四張紙牌洗勻正面朝下隨機放在桌面上.
(1)從四張紙牌中隨機摸出一張,摸出的牌面圖形是中心對稱圖形的概率是 .
(2)小明和小亮約定做一個游戲,其規則為:先由小明隨機摸出一張,不放回.再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形既是軸對稱圖形又是中心對稱圖形,則小亮獲勝,否則小明獲勝.這個游戲公平嗎?請用列表法(或畫樹狀圖)說明理由.(紙牌用表示)若不公平,請你幫忙修改一下游戲規則,使游戲公平.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,平移一條拋物線,如果平移后的新拋物線經過原拋物線頂點,且新拋物線的對稱軸是y軸,那么新拋物線稱為原拋物線的“影子拋物線”.
(1)已知原拋物線表達式是,求它的“影子拋物線”的表達式;
(2)已知原拋物線經過點(1,0),且它的“影子拋物線”的表達式是,求原拋物線的表達式;
(3)小明研究后提出:“如果兩條不重合的拋物線交y軸于同一點,且它們有相同的“影子拋物線”,那么這兩條拋物線的頂點一定關于y軸對稱.”你認為這個結論成立嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,E,F分別是邊AB,AD上的動點,AE=DF,連接DE,CF交于點P,過點P作PK∥BC,且PK=2,若∠CBK的度數最大時,則BK長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】第 24 屆冬奧會將于 2022 年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有 5 張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現將這 5 張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有甲、乙、丙三人組成的籃球訓練小組,他們三人之間進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續傳球三次.
(1)若開始時籃球在甲手中,則經過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時籃球在甲手中,求經過連續三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com