【題目】如圖所示,在中,
,
、
分別是
、
的垂直平分線,點
、
在
上,則
_______.
科目:初中數學 來源: 題型:
【題目】材料閱讀:利用完全平方公式,可以將多項式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項ax2+bx+c式的配方法.
例如:x2+11x+24=x2+11x++24=
探究發現:
小明發現:
運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
例如: x2+11x+24=x2+11x++24=
=
=(x+8)(x+3)
小紅發現:運用多項式的配方法能確定一些多項式的最大值或最小值.
x2+11x+24=x2+11x++24=
因為不論x取何值,,所以當
,時,多項式x2+11x+24有最小值為
根據以上材料,解答下列問題:
(1)分解因式:x23x10;
(2)試確定:多項式的最值(即最大值或最小值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【閱讀學習】 劉老師提出這樣一個問題:已知α為銳角,且tanα=,求sin2α的值.
小娟是這樣解決的:
如圖1,在⊙O中,AB是直徑,點C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==
.
易得∠BOC=2α.設BC=x,則AC=3x,則AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α=
= .
【問題解決】
已知,如圖2,點M、N、P為圓O上的三點,且∠P=β,tanβ =,求sin2β的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉得到△CD′E′,及旋轉角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當 AD′∥CE′時,求α的大;
(2)如圖②,若 90°<α<180°,當點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標m的取值范圍(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.
(1)求證:△ACD≌△CBE;
(2)若AD=12,DE=7,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點,四邊形ABCD的對角線AC,BD交于點E,BC= ,CD=
,則sin∠AEB的值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P(a,b)是直線y=-x-5與雙曲線的一個交點,則以a、b兩數為根的一元二次方程是( ).
A. x2-5x+6=0 B. x2+5x+6=0 C. x2-5x-6="0" D. x2+5x-6=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一條筆直的公路上有甲乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地.設他們同時出發,運動的時間為t(分),與乙地的距離為s(米),圖中線段EF,折線OABD分別表示兩人與乙地距離s和運動時間t之間的函數關系圖象.
(1)李越騎車的速度為______米/分鐘;
(2)B點的坐標為______;
(3)李越從乙地騎往甲地時,s與t之間的函數表達式為______;
(4)王明和李越二人______先到達乙地,先到______分鐘.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com