【題目】已知:如圖,在△ABC中,∠CAB=70°,將△ABC繞點A按逆時針方向旋轉到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數為 .
科目:初中數學 來源: 題型:
【題目】在四邊形ABDE中,C是BD邊的中點.
(1)如圖(1),若AC平分∠BAE,∠ACE=90°,則線段AE、AB、DE的長度滿足的數量關系為 ;(直接寫出答案)
(2)如圖(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,則線段AB、BD、DE、AE的長度滿足怎樣的數量關系?寫出結論并證明;
(3)如圖(3),BD=8,AB=2,DE=8,若ACE=135°,則線段AE長度的最大值是 (直接寫出答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC=45°,AH⊥BC于點H,點D為AH上的一點,且DH=HC,連接BD并延長BD交AC于點E,連接EH.
(1)請補全圖形;
(2)求證:△ABE是直角三角形;
(3)若BE=a,CE=b,求出S△CEH:S△BEH的值(用含有a,b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解一元二次不等式 .
請按照下面的步驟,完成本題的解答.
解: 可化為
.
(1)依據“兩數相乘,同號得正”,可得不等式組① 或不等式組②________.
(2)解不等式組①,得________.
(3)解不等式組②,得________.
(4)一元二次不等式 的解集為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E. 求證:AB=BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.
(1)求證:AE=2CE;
(2)連接CD,請判斷△BCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點F在CA的延長線上,FH⊥BE交BD于點G,交BC于點H.下列結論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=
(∠BAC﹣∠C);其中正確的是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠CAB=90°,AC=AB,點D、E是BC上的兩點,且∠DAE=45°,△ADC與△ADF關于直線AD對稱.
(1)求證:△AEF≌△AEB;
(2)∠DFE= °.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com