【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于點O,那么圖中的等腰三角形個數( 。
A.4B.6C.7D.8
【答案】D
【解析】
由在△ABC中,AB=AC,∠A=36°,根據等邊對等角,即可求得∠ABC與∠ACB的度數,又由BD、CE分別為∠ABC與∠ACB的角平分線,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形內角和定理與三角形外角的性質,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角對等邊,即可求得答案.
解:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CE,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴圖中的等腰三角形有8個.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店代銷一批季節性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應市場變化調整第一個月的銷售價,預計銷售定價每增加1元,銷售量將減少10套。
(1)若設第二個月的銷售定價每套增加x元,填寫下表。
時間 | 第一個月 | 第二個月 |
每套銷售定價(元) | ||
銷售量(套) |
(2)若商店預計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發前,汽車油箱內儲油45升;當行駛150千米時,發現油箱剩余油量為30升.
(1)已知油箱內余油量y(升)是行駛路程x(千米)的一次函數,求y與x的函數關系式;
(2)當油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(14分)如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.
(1)請直接寫出線段BE與線段CD的關系: ;
(2)如圖2,將圖1中的△ABC繞點A順時針旋轉角α(0<α<360°),
①(1)中的結論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當AC=ED時,探究在△ABC旋轉的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:
),且D、M、E、C、N、B、A在同一平面內,E、C、N在同一條直線上,求條幅的長度(結果精確到1米)(參考數據:
≈1.73,
≈1.41)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結DF,M為DF的中點,連結MA,ME.若AM⊥ME,則AE的長為( )
A.5 B.2 C.2
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知
為坐標原點,點
的坐標為
,
的半徑為
,過
作直線
平行于
軸,設
與
軸交點為
,點
在
上運動.
(1)當點運動到圓上時,求此時點
的坐標
(2)如圖,當點
的坐標為
時,連接
,作
于
,求
的長和
的長
(3)在(2)條件下,試判斷直線與
的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別是邊AD,BC的中點,AC分別交BE,DF于G,H,試判斷下列結論:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四邊形GHDE=2:3,其中正確的結論是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com