【題目】如圖.在Rt△ABC中,∠A=30°,DE垂直平分斜邊AC,交AB于D,E為垂足,連接CD,若BD=1,則AC的長是_____.
【答案】2.
【解析】求出∠ACB,根據線段垂直平分線求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.
解:∵∠A=30°,∠B=90°,
∴∠ACB=180°﹣30°﹣90°=60°,
∵DE垂直平分斜邊AC,
∴AD=CD,
∴∠A=∠ACD=30°,
∴∠DCB=60°﹣30°=30°,
∵BD=1,
∴CD=AD=2,
∴AB=1+2=3,
在Rt△BCD中,由勾股定理得:CB=,
在Rt△ABC中,由勾股定理得:AC==2
,
故答案為:2.
“點睛”本題考查了線段垂直平分線,含30度角的直角三角形,等腰三角形的性質,三角形的內角和定理等知識點的應用,主要考查學生運用這些定理進行推理的能力,題目綜合性比較強,難度適中.
科目:初中數學 來源: 題型:
【題目】在中,
,分別以
,
為邊向外作正方形
和正方形
.
(1)當時,正方形
的周長=_______(用含
的代數式表示);
(2)連接.試說明:三角形
的面積等于正方形
面積的一半.
(3)已知,且點
是線段
上的動點,點
是線段
上的動點,當
點和
點在移動過程中,
的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.在此運動變化的過程中,下列結論:①△DFE是等腰直角三角形;②四邊形CDFE不可能為正方形;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結論有( )個.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=
(k>0,x>0)交于點A,將直線y=
x向上平移4個單位長度后,與y軸交于點C,與雙曲線y=
(k>0,x>0)交于點B,若OA=3BC,則k的值為( )
A. 3 B. 6 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在平面直角坐標系xOy中,點A1,A2,A3,···和B1,B2,B3,···分別在直線和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
,那么點
的縱坐標是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com