試題分析:
(1)證明:連結OD--------------------1分

∵AB=AC,∴∠C=∠B.
∵OD=OB,∴∠B=∠1.
∴∠C=∠1. --------------------2分
∴OD∥AC,∴∠2=∠FDO.-----------------3分
∵DF⊥AC,∴∠2=90°,∴∠FDO=90°,
即FD⊥OD且D點在⊙O 上
∴FD是圓O的切線. ------------------------------4分
(2)∵AB是⊙O的直徑,∴∠ADB=90°.
∵AC=AB,∴∠3=∠4-------------------------5分
∴

,∵

,∴

----6分
∴∠B=2∠4,∴∠B=60°,∠5=120°,
∴△ABC是等邊三角形, ∠C=60°. ------------7分
在Rt△CFD中, ∵∠C=60°,∴∠CDF=30°
∵DF="2" ∴CD=

∴DB=

,AB=BC=

∴AO=

.----------------------------8分
∴

.---
點評:此類試題屬于難度較大的試題,考生在解答此類試題時要注意分析切線的基本性質定理及其在證明題中的應用