精英家教網 > 初中數學 > 題目詳情
已知a是實數,函數y=2ax2+2x-3-a.若存在x(-1≤x≤1)滿足2ax2+2x-3-a=0,求實數a的取值范圍.

【答案】分析:此題需要分兩種情況進行討論:
①若此函數是一次函數,則a=0,解析式為:y=2x-3,顯然在區間[-1,1]之間沒有符合條件的x,故此種情況不成立;
②若此函數是二次函數,即a≠0;又要分兩種情況進行討論:
一、若在區間[-1,1]中,只有一個符合條件的零點,那么
1、當x=1、x=-1時,函數值的乘積應該是0或負數,即f(1)•f(-1)≤0,由此可求出a的取值范圍;
2、該二次函數與x軸只有一個交點,令△=0,即可求出a的值;
二、若在區間[-1,1]中,有兩個零點,那么要分兩種情況進行討論:
1、a>0,此時函數的開口方向向上,有:f(1)•f(-1)≥0,且根的判別式△>0,據此可求出a的取值范圍;
2、a<0,此時函數的開口方向向下,有:f(1)•f(-1)≥0,且根的判別式△>0,據此可求出a的另一個取值范圍;
兩式上面所提到的各種情況,即可求得a的取值范圍.
解答:解:y=f(x)=2ax2+2x-3-a,若a=0,f(x)=2x-3,顯然在區間[-1,1]上沒有符合條件的x
所以a≠0
令△=4+8a(3+a)=8a2+24a+4=0,
得a=
當a=時,y=f(x)恰有一個x(-1≤x≤1);
當f(-1)•f(1)=(a-1)(a-5)≤0,
即1≤a≤5時,y=f(x),也恰有一個x(-1≤x≤1);
當y=f(x)在[-1,1]上有兩個x時,則
,或;
解得a≥5或a<;
因此a的取值范圍是a≥1或a≤
點評:此題主要考查了從函數值域的角度來分析方程有解的參數范圍問題,難點在于將各種可能的情況都考慮到.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知a是實數,函數y=(a2-1)x+a(-1≤x≤1),若|a|≤1,求證:|y|≤
54

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知a是實數,函數y=2ax2+2x-3-a.若存在x0(-1≤x0≤1)滿足2ax02+2x0-3-a=0,求實數a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知a是實數,函數y=(a2-1)x+a(-1≤x≤1),若|a|≤1,求證:|y|≤數學公式

查看答案和解析>>

科目:初中數學 來源:2002年安徽省普通高中理科實驗班招生考試數學試卷(解析版) 題型:解答題

已知a是實數,函數y=(a2-1)x+a(-1≤x≤1),若|a|≤1,求證:|y|≤

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视