【題目】學生會要舉辦一個校園書畫藝術展覽會,為國慶獻禮,小華和小剛準備將長AD為400cm,寬AB為130cm的矩形作品四周鑲上彩色紙邊裝飾,如圖所示,兩人在設計時要求內外兩個矩形相似,矩形作品面積是總面積的,他們一致認為上下彩色紙邊要等寬,左右彩色紙邊要等寬,這樣效果最好,請你幫助他們設計彩色紙邊寬度.
科目:初中數學 來源: 題型:
【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為數學實驗“先行示范校”,一數學活動小組帶上高度為1.5m的測角儀BC,對建筑物AO進行測量高度的綜合實踐活動,如圖,在BC處測得直立于地面的AO頂點A的仰角為30°,然后前進40m至DE處,測得頂點A的仰角為75°.
(1)求∠CAE的度數;
(2)求AE的長(結果保留根號);
(3)求建筑物AO的高度(精確到個位,參考數據:,
).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是矩形
內的任意一點,連接
、
、
、
, 得到
,
,
,
,設它們的面積分別是
,
,
,
, 給出如下結論:①
②
③若
,則
④若
,則
點在矩形的對角線上.其中正確的結論的序號是( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A,B的距離,他們設計了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點,其中4位同學分別測得四組數據:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根據所測數據求得A,B兩樹距離的有( )
A.1組B.2組C.3組D.4組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質地完全相同的乒乓球,球面上分別標有數-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數是負數的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數之和是正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數圖象的頂點坐標為M(1,0),直線y=x+m與該二次函數的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在y軸上.P(a,0)是x軸上的一個動點,過P作x軸的垂線分別與直線AB和二次函數的圖象交于D、E兩點.
(1)求m的值及這個二次函數的解析式;
(2)若點P的橫坐標為2,求△ODE的面積;
(3)當0<a<3時,求線段DE的最大值;
(4)若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】類比梯形的定義,我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數.
(2)在探究“等對角四邊形”性質時:
①小紅畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發現CB=CD成立.請你證明此結論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對角線AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點C沿著某條路徑運動,以點C為旋轉中心,將點A(0,4)逆時針旋轉90°到點B(m,1),若﹣5≤m≤5,則點C運動的路徑長為__.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com