【題目】如圖,∠AOB = 30°,點P是∠AOB內任意一點,且OP = 7,點E和點F分別是射線OA和射線OB上的動點,則△PEF周長的最小值是______.
【答案】7
【解析】
設點P關于OA的對稱點為C,關于OB的對稱點為D,當點E、F在CD上時,△PEF的周長最。
分別作點P關于OA、OB的對稱點C、D,連接CD,分別交OA、OB于點E、F,連接OP、OC、OD、PE、PF.
∵點P關于OA的對稱點為C,關于OB的對稱點為D,
∴PE=CE,OP=OC,∠COA=∠POA;
∵點P關于OB的對稱點為D,
∴PF=DF,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=7.
∴△PEF的周長的最小值=PE+EF+PF=CE+EF+DF≥CD=7.
故答案為7.
科目:初中數學 來源: 題型:
【題目】(問題探究)小敏在學習了Rt△ABC的性質定理后,繼續進行研究.
(1)(i)她發現圖①中,如果∠A=30°,BC與AB存在特殊的數量關系是 ;
(ii)她將△ABC沿AC所在的直線翻折得△AHC,如圖②,此時她證明了BC和AB的關系;請根據小敏證明的思路,補全探究的證明過程;
猜想:如果∠A=30°,BC與AB存在特殊的數量關系是 ;
證明:△ABC沿AC所在的直線翻折得△AHC,
(2)如圖③,點E、F分別在四邊形ABCD的邊BC、CD上,且∠B=∠D=90°,連接AE、AF、EF,將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,連接AC,若∠EAF=30°,AB2=27,則△CEF的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD,CE分別是AC,AB邊上的高,BD, CE交于O,則圖中共有相似三角形( 。
A. 5對 B. 6對 C. 7對 D. 8對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點,以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=1,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀與思考:利用多項式的乘法法則,可以得到,反過來,則有
利用這個式子可以將某些二次項系數是1的二次三項式分解因式。例如:將式子
分解因式.這個式子的常數項
,一次項系數
,所以
.
解:.
上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數,分別寫在十字交叉線的左上角和左下角;再分解常數項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數和,使其等于一次項系數(如圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:;
(2)分解因式:;
(3)若可分解為兩個一次因式的積,寫出整數P的所有可能值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某村要設計修建一條引水渠,渠道的橫斷面為等腰梯形,渠道底面寬0.8m,渠道內坡度是1:0.5.引水時,水面要低于渠道上沿0.2m,水流的橫斷面(梯形ABFE)的面積為1.3m2,求水渠的深度h.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向內旋轉35°到達ON位置,此時點A,C的對應位置分別是點B,D,測量出∠ODB=25°,點D到點O的距離為30cm,求滑動支架BD的長.
(結果精確到1cm,參考數據:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.
(1)請說出這個幾何體模型的最確切的名稱是__ __;
(2)如圖②是根據 a,h的取值畫出的幾何體的主視圖和俯視圖(圖中的粗實線表示的正方形(中間一條虛線)和三角形),請在網格中畫出該幾何體的左視圖;
(3)在(2)的條件下,已知h=20 cm,求該幾何體的表面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com