【題目】如圖1,已知數軸上有三點A、B、C,它們對應的數分別為a、b、c,且c-b=b-a;點C對應的數是10.
(1)若BC=15,求a、b的值;
(2)如圖2,在(1)的條件下,O為原點,動點P、Q分別從A、C同時出發,點P向左運動,運動速度為2個單位長度/秒,點Q向右運動,運動速度為1個單位長度/秒,N為OP的中點,M為BQ的中點.
①用含t代數式表示PQ、 MN;
②在P、Q的運動過程中,PQ與MN存在一個確定的等量關系,請指出他們之間的關系,并說明理由.
【答案】(1)a=-20; b=-5;(2)①PQ=30+3t,MN= 12.5+1.5t;②PQ-2MN=5.
【解析】
(1)根據BC=15,點C對應的數是10可求出b的值,根據c-b=b-a可求出a的值;
(2)①利用中點的定義及線段的和差即可表示出PQ、 MN的值;②觀察①中得到的結果即可得出PQ與MN存在的等量關系.
(1)∵BC=15,點C對應的數是10,
∴c-b=15,
∴b=-5,
∵c-b=b-a=15,
∴a=-20;
(2)①∵OQ=10+t,OP=20+2t,
∴PQ=(10+t)+( 20+2t)=30+3t;
∵OB=5, OQ=10+t,
∴BQ=15+t,
∵M為BQ的中點,
∴BM=7.5+0.5t,
∴OM=7.5+0.5t-5=2.5+0.5t.
∵OP=20+2t, N為OP的中點,
∴ON=10+t,
∴MN=OM+ON=12.5+1.5t;
②PQ-2MN=5.
∵PQ=30+3t,MN= 12.5+1.5t,
∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE⊥OD,OE平分∠AOF.
(1)∠BOD與∠DOF相等嗎?請說明理由.
(2)若∠DOF=∠BOE,求∠AOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4cm,點D是斜邊AB的中點,點E從點B出發以1cm/s的速度向點C運動,點F同時從點C出發以一定的速度沿射線CA方向運動,規定:當點E到終點C時停止運動;設運動的時間為x秒,連接DE、DF.
(1)填空:S△ABC= cm2;
(2)當x=1且點F運動的速度也是1cm/s時,求證:DE=DF;
(3)若動點F以3cm/s的速度沿射線CA方向運動;在點E、點F運動過程中,如果有某個時間x,使得△ADF的面積與△BDE的面積存在兩倍關系,請你直接寫出時間x的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菲爾茲獎是國際上享有崇高聲譽的一個數學獎項,每4年評選一次,頒給有卓越貢獻的年輕數學家,被視為數學界的諾貝爾獎.下面的數據是從1936年至2014年45歲以下菲爾茲獎得住獲獎時的年齡(歲): 39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37
34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38
34 33 40 36 36 37 31 38 38 37 35 40 39 37
請根據以上數據,解答以下問題:
(1)小彬按“組距為5”列出了如下的頻數分布表,每組數據含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數分布直方圖:
分組 | 頻數 |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
總 計 | 50 |
(2)在(1)的基礎上,小彬又畫出了如圖所示的扇形統計圖,圖中B組所對的圓心角的度數為;
(3)根據(1)中的頻數分布直方圖試描述這50位菲爾茲獎得主獲獎時的年齡的分布特征.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)是一個晾衣架的實物圖,支架的基本圖形是菱形,MN是晾衣架的一個滑槽,點P在滑槽MN上、下移動時,晾衣架可以伸縮,其示意圖如圖(2)所示,已知每個菱形的邊長均為20cm,且AB=CD=CP=DM=20cm.
(1)當點P向下滑至點N處時,測得∠DCE=60°時 ①求滑槽MN的長度;
②此時點A到直線DP的距離是多少?
(2)當點P向上滑至點M處時,點A在相對于(1)的情況下向左移動的距離是多少? (結果精確到0.01cm,參考數據 ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=12,動點P從A點出發,按A→B的方向在AB上移動,動點Q從B點出發,按B→C的方向在BC上移動(當P點到達點B時,P點和Q點停止移動,且兩點的移動速度相等),記PA=x,△BPQ的面積為y,則y關于x的函數圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若反比例函數y=與一次函數y=2x-4的圖象都經過點A(a,2).
(1)求反比例函數y=的表達式;
(2)當反比例函數y=的值大于一次函數y=2x-4的值時,求自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=90°,OB=2,點A是直線OM上的一個動點,連結AB,作∠MAB與∠ABN的角平分線AF與BF,兩角平分線所在的直線交于點F,求點A在運動過程中線段BF的最小值為 ______
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com