
(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設AD=x,CE=y,求y與x之間的函數關系式,并指出自變量x的取值范圍;
(2)當AD長為關于x的方程2x
2+(4m+1)x+2m=0的一個整數根時,求m的值.
(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸

上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設⊙A的半徑為r
1,⊙B的半徑為r
2,且r
2=
r
1,求公切線DP的長及直線DP的函數解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當DE=4時,B點在什么位置?從解答中能發現什么?