【題目】如圖,四邊形ABCD是⊙O的內接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.
⑴ 求證:AB=AC.
⑵ 若BD=11,DE=2,求CD的長.
【答案】⑴ 證明見解析⑵ 7
【解析】試題分析:(1)同弧所對圓周角相等∠BCA=∠ADB,四邊形的外接圓性質,可以得∠ADF=∠ABC,利用AD平分∠BDF,可以得到AB=AC.
(2)試題解析:過A作BD的垂線于G,構造兩個全等三角形,
GD=ED,BG=CE ,可得CD長.
試題解析:
⑴ ∵ AD平分∠BDF ,
∴ ∠ADF=∠ADB,
∵ ∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,
∴ ∠ADF=∠ABC,
∵ ∠ACB=∠ADB,
∴ ∠ABC=∠ACB,
∴ AB=AC .
⑵ 過點A作AG⊥BD,垂足為點G.
∵ AD平分∠BDF,AE⊥CF,AG⊥BD.
∴ AG=AE,∠AGB=∠AEC=90°,
在Rt△AED和Rt△AGD中,
,
∴ Rt△AED≌Rt△AGD(HL),
∴ GD=ED=2,
在Rt△AEC和Rt△AGB中,
,
∴ Rt△AEC≌Rt△AGB(HL),
∴ BG=CE ,
∵ BD=11,
∴ BG=BD-GD=11-2=9 .
∴ CE=BG=9.
∴ CD=CD-DE=9-2=7.
科目:初中數學 來源: 題型:
【題目】一個圓錐形和煙囪帽的底面直徑是40cm,母線長是120cm,需要加工這樣的一個煙囪帽,請你畫一畫:
(1)至少需要多少厘米鐵皮(不計接頭)
(2)如果用一張圓形鐵皮作為材料來制作這個煙囪帽,那么這個圓形鐵皮的半徑至少應是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若a=0.32,b=﹣3﹣2,c=,d=
,則它們的大小關系是( )
A. a<b<c<d B. b<a<d<c C. a<d<c<b D. c<a<d<b
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠設計了一款工藝品,每件成本元,為了合理定價,現投放市場進行試銷.據市場調查,銷售單價是
元時,每天的銷售量是
件,若銷售單價每降低
元,每天就可多售出
件,但要求銷售單價不得低于
元.如果降價后銷售這款工藝品每天能盈利
元,那么此時銷售單價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電子廠商投產一種新型電子產品,每件制造成本為18元,試銷過程中發現,每月銷售量(萬件)與銷售單價
(元)之間的關系可以近似地看作一次函數
(利潤=售價﹣制造成本)
(1)寫出每月的利潤(萬元)與銷售單價
(元)之間的函數關系式;
(2)根據相關部門規定,這種電子產品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某鋼鐵企業為了適應市場競爭的需要,提高生產效率,決定將一部分鋼鐵生產一線員工調整去從事服務工作,該企業有鋼鐵生產一線員工1000人,平均每人可創造年產值30萬元,根據規劃,調整出去的一部分一線員工后,余下的生產一線員工平均每人全年創造年產值可增加30%,調整到服務性工作崗位人員平均每人全年可創造產值24萬元,如果要保證員工崗位調整后,現在全年總產值至少增加20%,且鋼鐵產品的產值不能超過33150萬元,怎樣安排調整到服務行業的人數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在直角三角形ABC中,∠ACB=900,D是AB上一點,且∠ACD=∠B
(1)判斷△ACD的形狀?并說明理由。
(2)你在證明你的結論過程中應用了哪一對互逆的真命題?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com