【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點分別從A,B同時出發,點P沿折線AB﹣BC運動,在AB上的速度是2cm/s,在BC上的速度是2cm/s;點Q在BD上以2cm/s的速度向終點D運動,過點P作PN⊥AD,垂足為點N.連接PQ,以PQ,PN為鄰邊作PQMN.設運動的時間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2)
(1)當PQ⊥AB時,x等于多少;
(2)求y關于x的函數解析式,并寫出x的取值范圍;
(3)直線AM將矩形ABCD的面積分成1:3兩部分時,直接寫出x的值.
【答案】(1)s;(2)y=
;(3)當x=
s或
時,直線AM將矩形ABCD的面積分成1:3兩部分.
【解析】
(1)當PQ⊥AB時,BQ=2PB,由此構建方程即可解決問題;
(2)分三種情形分別求解即可解決問題;
(3)分兩種情形分別求解即可解決問題.
解:(1)當PQ⊥AB時,BQ=2PB,
∴2x=2(2﹣2x),
∴x=s.
(2)①如圖1中,當0<x≤時,重疊部分是四邊形PQMN.
y=2x×x=2
x2.
②如圖②中,當<x≤1時,重疊部分是四邊形PQEN.
y=(2﹣x+2x)×
x=
x2+
x.
③如圖3中,當1<x<2時,重疊部分是四邊形PNEQ.
y=(2﹣x+2)×[
x﹣2
(x﹣1)]=
x2﹣3
x+4
;
綜上所述,y=
(3)①如圖4中,當直線AM經過BC中點E時,滿足條件.
則有:tan∠EAB=tan∠QPB,
∴=
,
解得x=.
②如圖5中,當直線AM經過CD的中點E時,滿足條件.
此時tan∠DEA=tan∠QPB,
∴=
,
解得x=,
綜上所述,當x=或
時,直線AM將矩形ABCD的面積分成1:3兩部分.
故答案為:(1)s;(2)y=
;(3)x=
或
.
科目:初中數學 來源: 題型:
【題目】請你畫出一個以BC為底邊的等腰ΔABC,使底邊上的高AD=BC.
(1)求tanB和 sinB的值;
(2)在你所畫的等腰ΔABC中設底邊BC=5米,求腰上的高BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線:
與
軸、
軸分別交于點B、C,經過B、C兩點的拋物線
與
軸的另一個交點為A.
(1)求該拋物線的解析式;
(2)若點P在直線下方的拋物線上,過點P作PD∥
軸交
于點D,PE∥
軸交
于點E,
求PD+PE的最大值;
(3)設F為直線上的點,以A、B、P、F為頂點的四邊形能否構成平行四邊形?若能,求出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形中,
,以
為直徑的
經過點
,連接
、
交于點
.
(1)證明:;
(2)若,證明:
與
相切;
(3)在(2)條件下,連接交
于點
,連接
,若
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是學習分式方程應用時,老師板書的問題和兩名同學所列的方程.
根據以上信息,解答下列問題.
(1)冰冰同學所列方程中的x表示什么,慶慶同學所列方程中的y表示什么;
(2)兩個方程中任選一個,并寫出它的等量關系;
(3)解(2)中你所選擇的方程,并回答老師提出的問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】海南建省30年來,各項事業取得令人矚目的成就,以2016年為例,全省社會固定資產總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統計圖和扇形統計圖,請完成下列問題:
(1)在圖1中,先計算地(市)屬項目投資額為多少億元,然后將條形統計圖補充完整;
(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,求m的值,β等于多少度(m、β均取整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,在正方形ABCD中,AD=4,E,F分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結論:①DE+BF=EF,②BF=,③AF=
,④S△MEF=
中正確的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,C、D是⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F,則下列結論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是( )
A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤
C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com