精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ACB中,∠C=90゜,點O為AB的中點,OE⊥OF交AC于E點、交BC于F點,EM⊥AB,FN⊥AB,垂足分別為M、N,
求證:AM=ON.
分析:首先連接連接OC,EF,易證得C,E,O,F四點共圓,又由圓周角定理與直角三角形斜邊上的中線等于斜邊的一半,證得∠A=∠EFO,繼而證得△EOF∽△EMA,可得
AM
EM
=
OF
EO
,易證得∴△EOM∽∠OFN,可得
ON
EM
=
OF
EO
,即可證得結論.
解答:證明:連接OC,EF,
∵在Rt△ACB中,∠C=90゜,OE⊥OF,
∴∠EOF=90°,
∴∠C+∠EOF=180°,
∴C,E,O,F四點共圓,
∴∠ECO=∠EFO,
∵點O為AB的中點,
∴OA=OC=OB=
1
2
AB,
∴∠A=∠ECO,
∴∠A=∠EFO,
∵EM⊥AB,
∴∠AME=∠EOF=90°,
∴△EOF∽△EMA,
AM
EM
=
OF
EO
,
∵FN⊥AB,EM⊥AB,
∴∠FON+∠NFO=90°,
∴∠EOM+∠MEO=90°,
∵∠EOM+∠FON=90°,
∴∠MEO=∠FON,
∴△EOM∽∠OFN,
ON
EM
=
OF
EO
,
AM
EM
=
ON
EM

∴AM=ON.
點評:此題考查了相似三角形的判定與性質、四點共圓以及直角三角形的性質.此題難度較大,注意掌握輔助線的作法,注意掌握數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,點P由B出發沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2).根據以上信息,解答下列問題:
(1)當t為何值時,以A、P、Q為頂點的三角形與△ABC相似?
(2)設四邊形PQCB的面積為y(cm2),直接寫出y與t之間的函數關系式;
(3)在點P、點Q的移動過程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個四邊形,那么是否存在某一時刻t,使組成的四邊形為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖:在Rt△ACB中,∠C=90°,AC=8,BC=6,CD是斜邊AB上的高.若點P在線段DB上,連接CP,sin∠APC=
2425
.求CP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于點E,過E作ED⊥AB于D點,當∠A=
30°
30°
 時,ED恰為AB的中垂線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于
40°
40°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视