【題目】在平面直角坐標系xOy中,已知拋物線y=﹣+c與x軸交于A、B兩點(點A在點B的左側),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=
.
(1)求此拋物線的函數表達式;
(2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F,若=
時,求點P的坐標;
(3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQ交x軸于點G,當Q點在拋物線上運動時,是否存在點Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由.
【答案】(1)y=﹣+4;(2)P(0,2)或P(0,﹣2).(3)存在,符合條件的所有直線QG的解析式為:y=4x+
或y=﹣
x+
.
【解析】
試題分析:(1)由拋物線y=﹣+c與x軸交于A、B兩點(點A在點B的左側),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=
,求出c的值,進而求出拋物線方程;
(2)如圖1,由OE⊥PH,MF⊥PH,MH⊥OH,可證△OEH∽△HFM,可知HE,HF的比例關系,求出P點坐標;
(3)首先求出D點坐標,寫出直線MD的表達式,由兩直線平行,兩三角形相似,可得NG∥MD,直線QG解析式.
解:(1)∵M為拋物線y=﹣+c的頂點,
∴M(2,c).
∴OH=2,MH=|c|.
∵a<0,且拋物線與x軸有交點,
∴c>0,
∴MH=c,
∵sin∠MOH=,
∴=
.
∴OM=c,
∵OM2=OH2+MH2,
∴MH=c=4,
∴M(2,4),
∴拋物線的函數表達式為:y=﹣+4.
(2)如圖1,∵OE⊥PH,MF⊥PH,MH⊥OH,
∴∠EHO=∠FMH,∠OEH=∠HFM.
∴△OEH∽△HFM,
∴=
=
,
∵=
,
∴MF=HF,
∴∠OHP=∠FHM=45°,
∴OP=OH=2,
∴P(0,2).
如圖2,同理可得,P(0,﹣2).
(3)∵A(﹣1,0),
∴D(1,0),
∵M(2,4),D(1,0),
∴直線MD解析式:y=4x﹣4,
∵ON∥MH,∴△AON∽△AHM,
∴=
=
=
,
∴AN=,ON=
,N(0,
).
如圖3,若△ANG∽△AMD,可得NG∥MD,
∴直線QG解析式:y=4x+,
如圖4,若△ANG∽△ADM,可得=
∴AG=,
∴G(,0),
∴QG:y=﹣x+
,
綜上所述,符合條件的所有直線QG的解析式為:y=4x+或y=﹣
x+
.
科目:初中數學 來源: 題型:
【題目】時代超市出售的三種品牌月餅袋上,分別標有質量為:(500±5)g、(500±10)g、(500±20)g的字樣,從中任意拿出兩袋,它們的質量最多相差( )
A.10g
B.20g
C.30g
D.40g
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,點E是BC的中點,連接AE,將△ABE沿AE折疊,點B落在點F處,連接FC,則tan∠ECF=( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2013年1月1日新交通法規開始實施.為了解某社區居民遵守交通法規情況,小明隨機選取部分居民就“行人闖紅燈現象”進行問卷調查,調查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經常闖紅燈;D:其他”四種情況,并根據調查結果繪制出部分條形統計圖(如圖1)和部分扇形統計圖(如圖2).請根據圖中信息,解答下列問題:
(1)本次調查共選取名居民;
(2)求出扇形統計圖中“C”所對扇形的圓心角的度數,并將條形統計圖補充完整;
(3)如果該社區共有居民1600人,估計有多少人從不闖紅燈?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種袋裝大米的質量標識為“10±0.25千克”,則下列幾袋大米中合格的是( )
A. 9.70千克 B. 10.30千克 C. 10.51千克 D. 9.80千克
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數與反比例函數的圖象交于點A(﹣4,﹣2)和B(a,4).
(1)求一次函數和反比例函數的表達式及點B的坐標;
(2)根據圖象回答,當x在什么范圍內時,一次函數的值大于反比例函數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請說明;
【簡單應用】
(2)閱讀下面的內容,并解決后面的問題:如圖2, AP、CP分別平分∠BAD. ∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數;
解:∵AP、CP分別平分∠BAD. ∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結論得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P = (∠B+∠D)=26°.
【問題探究】如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想的度數,并說明理由.
【拓展延伸】
① 在圖4中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=
∠CDB,試問∠P與∠C、∠B之間的數量關系為:________________(用α、β表示∠P),
②在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關系,直接寫出結論______________________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com