【題目】
(1)解方程: +
=2
(2)如圖,在⊙O中,OA⊥OB,∠A=20°,求∠B的度數.
【答案】
(1)解:去分母得,1﹣(x+2)=2(x﹣2),
去括號得,1﹣x﹣2=2x﹣4,
移項得,﹣x﹣2x=﹣4﹣1+2,
合并同類項得,﹣3x=﹣3,
系數化為1得,x=1,
經檢驗,x=1是原方程的解
(2)解:連接OC,
∵OA⊥OB,
∴∠AOB=90°,
∴∠ACB=45°.
又∴OA=OC,∠A=20°,
∴∠ACO=20°,
∴∠OCB=25°.
又∵OC=OB
∴∠B=25°.
【解析】(1)先把分式方程化為整式方程,求出x的值,再代入最簡公分母進行檢驗即可;(2)連接OC,先根據圓周角定理求出∠ACB的度數,再由等腰三角形的性質求出∠ACO的度數,進而可得出∠BCO的度數,據此可得出結論.
【考點精析】通過靈活運用去分母法和圓周角定理,掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.
科目:初中數學 來源: 題型:
【題目】(本題10分)某自行車廠一周計劃生產700輛自行車,平均每天生產自行車100輛,由于各種原因,實際每天生產量與計劃每天生產量相比有出入。下表是某周的自行車生產情況(超計劃生產量為正、不足計劃生產量為負,單位:輛):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | +8 | -2 | -3 | +16 | -9 | +10 | -11 |
(1)根據記錄可知前三天共生產自行車 輛;
(2)產量最多的一天比產量最少的一天生產 輛;
(3)若該廠實行按生產的自行車數量的多少計工資,即計件工資制。如果每生產一輛自行車就可以得人民幣60 元,超額完多成任務,每超一輛可多得 15 元;若不足計劃數的,每少生產一輛扣 15 元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列等式:
第一個等式:a1==
-
第二個等式:a2==
-
第三個等式:a3==
-
第四個等式:a4==
-
按上述規律,回答下列問題:
(1)請寫出第六個等式:a6=_____=_____;
(2)用含n的代數式表示第n個等式:an=_____=_____;
(3)a1+a2+a3+a4+a5+a6=_____(得出最簡結果);
(4)計算:a1+a2+…+an.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB= ,CD=2,連接AC、AD、BD、BC、AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結論;
(2)當AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,點E、F分別在邊CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求證:四邊形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點D從點C出發沿CA方向以每秒4個單位長的速度向點A勻速運動,同時點E從點A出發沿AB方向以每秒2個單位長的速度向點B勻速運動,當其中一個點到達終點,另一個點也隨之停止運動,設點D、E運動的時間是t秒(t>0),過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)當四邊形BFDE是矩形時,求t的值;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.×
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某體育老師對自己任教的55名男生進行一百米摸底測試,若規定男生成績為16秒合格,下表是隨機抽取的10名男生分A、B兩組測試的成績與合格標準的差值(比合格標準多的秒數為正,少的秒數為負).
A 組 | ﹣1.5 | +1.5 | ﹣1 | ﹣2 | ﹣2 |
B組 | +1 | +3 | ﹣3 | +2 | ﹣3 |
(1)請你估算從55名男生中合格的人數大約是多少?
(2)通過相關的計算,說明哪個組的成績比較均勻;
(3)至少舉出三條理由說明A組成績好于B組成績,或找出一條理由來說明B組好于A組.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,點D、E分別在邊AC、BC上(不與點A、B、C重合),點P是直線AB上的任意一點(不與點A、B重合).設∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如圖,當點P在線段AB上運動,且n=90°時
①若PD∥BC,PE∥AC,則m=_____;
②若m=50°,求x+y的值.
(2)當點P在直線AB上運動時,直接寫出x、y、m、n之間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com