【題目】定義:幾個全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個正多邊形,我們稱作正多邊形的環狀連接。如圖,我們可以看作正六邊形的環狀連接,中間圍成一個邊長相等的正六邊形;若正八邊形作環狀連接,中間可以圍的正多邊形的邊數為;
若正八邊形作環狀連接,中間可以圍的正多邊形的邊數為________,若邊長為1的正n邊形作環狀連接,中間圍成的是等邊三角形,則這個環狀連接的外輪廓長為_________.
科目:初中數學 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數).
(參考數據:sin37°≈,tan37°≈
,sin65°≈
,tan65°≈
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,燈桿AB與墻MN的距離為18米,小麗在離燈桿(底部)9米的D處測得其影長DE為3m,設小麗身高為1.6m.
(1)求燈桿AB的高度;
(2)小麗再向墻走7米,她的影子能否完全落在地面上?若能,求此時的影長;若不能,求落在墻上的影長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學活動課上,老師提出這樣一個問題:“已知,同學們只用一塊三角板可以畫出它的角平分線嗎?”聰明的小陽經過思考設計了如下方案(如圖):
(1)在角的兩邊OM、ON上分別取OA=OB;
(2)過點A作DA⊥OM于點A,交ON于點D;過點B作EB⊥ON于點B,交OM于點E,AD、BE交于點C;
(3)作射線OC.
小陽接著解釋說:“此時,△OAC≌△OBC,所以射線OC為∠MON的平分線。”小陽的方案中,△OAC≌△OBC的依據是( )
A.SASB.ASAC.HLD.AAS
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料,完成相應任務:
(1)小明在研究命題①時,在圖1的正方形網格中畫出兩個符合條件的四邊形.由此判斷命題①是 命題(填“真”或“假”).
(2)小彬經過探究發現命題②是真命題.請你結合圖2證明這一命題.
(3)小穎經過探究又提出了一個新的命題:“若,
,
, , ,則四邊形
≌四邊形
”請在橫線上填寫兩個關于“角”的條件,使該命題為真命題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分線.
(1)如圖1,若E是AC邊上的一個定點,在CD上找一點P,使PA+PE的值最。
(2)如圖2,若E是AC邊上的一個動點,在CD上找一點P,使PA+PE的值最小,并直接寫出其最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=3,M為邊BC上的點,連接AM.如果將△ABM沿直線AM翻折后,點B恰好落在邊AC的中點處,那么點M到AC的距離是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用同樣規格的規格黑白兩色正方形瓷磚鋪設矩形地面,請觀察圖形并解答有關問題.
在第
個圖中,每一橫行共有________塊瓷磚,每豎行共有________塊瓷磚(均用含
的代數式表示)
設鋪設地面所用的瓷磚總塊數
,寫出
與
的函數關系式(不寫
的取值范圍)
按上述鋪設方案,鋪一塊這樣的地面共用了
塊瓷磚,求此時
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com