【題目】如圖,在⊙O中,分別將、
沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是( 。
A.8B.C.32D.
【答案】B
【解析】
過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD,根據平行線的性質得到EF⊥CD,根據折疊的性質得到OH=OA,進而推出△AOD是等邊三角形,得到D,O,B三點共線,且BD為⊙O的直徑,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四邊形ABCD是矩形,于是得到結論.
過O作OH⊥AB交⊙O于E,延長EO交CD于G,交⊙O于F,連接OA,OB,OD.
∵AB∥CD,∴EF⊥CD.
∵分別將、
沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=
OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等邊三角形.
∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三點共線,且BD為⊙O的直徑,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四邊形ABCD是矩形,∴AD=AO=4,AB=AD=4
,∴四邊形ABCD的面積是16
.
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線
經過B,C兩點,點A是拋物線與x軸的另一個交點.
(1)求出點B和點C的坐標.
(2)求此拋物線的函數解析式.
(3)在拋物線x軸上方存在一點P(不與點C重合),使,請求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農場要建一個飼養場(矩形ABCD)兩面靠現有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設飼養場(矩形ABCD)的一邊AB長為x米.
(1)飼養場另一邊BC= 米(用含x的代數式表示).
(2)若飼養場的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,
,以
為直徑作⊙
,分別交
,
于點
,
.
(1)求證:;
(2)若,求
的度數;
(3)過點作⊙
的切線,交
的延長線于點
,當
時,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀)x與代數式x2+2x﹣1的部分對應值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
x2+2x﹣1 | … | 2 | ﹣1 | ﹣2 | ﹣1 | 2 | … |
可知:當x=﹣3時,x2+2x﹣1=2>0,當x=﹣2時,x2+2x﹣1=﹣1<0,所以方程x2+2x﹣1=0的一個解在﹣3和﹣2之間.
(理解)(1)方程x2+2x﹣1=0的另一個解在兩個連續整數 和 之間.
(應用)(2)若關于x的一元二次方程﹣x2+2x+m=0的一個解在1和2之間,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質地完全相同的乒乓球,球面上分別標有數-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數是負數的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數之和是正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚優秀傳統文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“兩個黃鸝鳴翠柳”.
(1)小明回答該問題時,對第二個字是選“個”還是選“只”難以抉擇,若隨機選擇其中一個,則小明回答正確的概率是__________;
(2)小麗回答該問題時,對第二個字是選“個”還是選“只”、第五個字是選“鳴”還是選“明”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線頂點為A(1,2),且過原點,與x軸的另一個交點為B,
(1)求拋物線的解析式和B點坐標;
(2)拋物線上是否存在點M,使△OBM的面積等于2?若存在,請寫出M點坐標,若不存在,說明理由;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com