【題目】根據下列要求,解答相關問題.
(1)請補全以下求不等式﹣2x2﹣4x≥0的解集的過程
①構造函數,畫出圖象:根據不等式特征構造二次函數y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為______;并用鋸齒線標示出函數y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x>0的解集為_______.
(2)利用(1)中求不等式解集的步驟,求不等式x2﹣2x+1≥4的解集.
①構造界點,畫出圖象;
②求得界點,標志所需;
③借助圖象,寫出解集
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經過A(﹣1,0),C(0,3)兩點,它的對稱軸與x軸交于點F,過點C作CE∥x軸交拋物線于另一點E,連結EF,AC.
(1)求該拋物線的表達式及點E的坐標;
(2)在線段EF上任取點P,連結OP,作點F關于直線OP的對稱點G,連結EG和PG,當點G恰好落到y軸上時,求△EGP的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點A落在A′的位置,若OB=,tan∠BOC=
,則點A′的坐標( )
A. (,
) B. (﹣
,
) C. (﹣
,
) D. (﹣
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著信息技術的快速發展,“互聯網+”滲透到我們日常生活的各個領域,網上在線學習交流已不再是夢,現有某教學網站策劃了A,B兩種上網學習的月收費方式:
收費方式 | 月使用費/元 | 包時上網時間/h | 超時費/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設每月上網學習時間為x小時,方案A,B的收費金額分別為yA,yB.
(1)如圖是yB與x之間函數關系的圖象,請根據圖象填空:m= ;n=
(2)寫出yA與x之間的函數關系式.
(3)選擇哪種方式上網學習合算,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=3,BC=4,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB’D,AB'與邊BC交于點E.若△DEB’為直角三角形,則BD的長是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知中,
,
,點
為
的中點,如果點
在線段
上以
的速度由點
向
點運動,同時,點
在線段
上由點
向
點以
的速度運動.經過( )秒后,
與
全等.
A.2B.3C.2或3D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°
(1)根據要求作圖(尺規作圖,保留作圖痕跡,不寫畫法)
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎上寫出一對相似比不為1的相似三角形和一對全等三角形:
_________________________;__________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=40°,求∠DBC的度數;
(2)若AE=6,△CBD的周長為20,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com