科目:初中數學 來源: 題型:解答題
已知:如圖, AC∥DF,直線AF分別與直線BD、CE 相交于點G、H,∠1=∠2,
求證: ∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH( ),
∴∠2=__ _______( 等量代換 )
∴ // ___________( 同位角相等,兩直線平行 )
∴∠C=_ _( 兩直線平行,同位角相等 )
又∵AC∥DF( )
∴∠D=∠ABG ( )
∴∠C=∠D ( )
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線CD上有一點P.
(1)如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數量關系?請說明理由.(提示:過點P作PE∥l1)
(2)若點P在C、D兩點的外側運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
⑴試說明:OB∥AC;
⑵如圖②,若點E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.試求∠EOC的度數;
⑶在⑵的條件下,若左右平行移動AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發生變化?若變化,試說明理由;若不變,求出這個比值;
⑷在⑶的條件下,當∠OEB=∠OCA時,試求∠OCA的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)如果∠AOD=40°,
①那么根據 ,可得∠BOC= 度.
②∠POF的度數是 度.
(2)圖中除直角外,還有相等的角嗎?請寫出三對:
① ;
② ;
③ .
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
以下是甲、乙、丙三人看地圖時對四個坐標的描述:
甲:從學校向北直走500米,再向東直走100米可到圖書館.
乙:從學校向西直走300米,再向北直走200米可到郵局.
丙:郵局在火車站西200米處.
根據三人的描述,若從圖書館出發,判斷下列哪一種走法,其終點是火車站( 。
A.向南直走300米,再向西直走200米 |
B.向南直走300米,再向西直走100米 |
C.向南直走700米,再向西直走200米 |
D.向南直走700米,再向西直走600米 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com