【題目】如圖,∠A=∠B=30°,P為AB中點,線段MV繞點P旋轉,且M為射線AC上(不與點d重合)的任意一點,且N為射線BD上(不與點B重合)的一點,設∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當MN=2BN時,求α的度數;
(3)若AB=4,60°≤α≤90°,直接寫出△BPN的外心運動路線的長度。
【答案】(1)見解析;(2)30°;(3)
【解析】
(1)由P為AB的中點,可得PA=PB,再由已知中∠A=∠B=30°,對頂角∠APM=∠BPN,根據ASA即可判定△APM≌△BPN;
(2)由(1)中結論可知PM=PN,即MN=2PN,由已知MN=2BN,可得BN=PN,根據等邊對等角,即α=∠B=30°;
(3)當α=60°時,由∠B=30°,可知MN⊥BD,此時BP的中點為△BPN的外心,當α=90°時,由∠B=30°,此時BN的中點為△BPN的外心,根據三角形中位線定理可得△BPN的外心運動路線的長度為PN的一半,即為.
(1)證明:∵P是AB的中點,∴PA=PB , 在△APM和△BPN中,
∴△APM≌△BPN(ASA)
(2)解:由(1)得:△APM≌△BPN , ∴PM=PN , ∴MN=2PN , ∵MN=2BN , ∴BN=PN , ∴α=∠B=30°
(3)解:
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉中心轉動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F.
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現將三角板繞點P逆時針旋轉α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎上繼續旋轉,當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一種商品,單價30元,試銷中發現這種商品每天的銷售量夕(件)與每件的銷售價(元)滿足關系:
=100-2
.若商店每天銷售這種商品要獲得200元的銷售利潤,那么每件商品的售價應定為多少元?每天要售出這種商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,其中從第三個數起,每一個數都等于它前面兩個數的和.現以這組數中的各個數作為正方形的邊長值構造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規律繼續作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=x﹣6與x軸、y軸分別交于B、C兩點,A是以D(0,2)為圓心,2為半徑的圓上一動點,連結AC、AB,則△ABC面積的最小值是( 。
A. 26B. 24C. 22D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,二次函數y=ax2+bx+2的圖象經過點A(4,0),B(﹣4,﹣4),且與y軸交于點C.
(1)請求出二次函數的解析式;
(2)若點M(m,n)在拋物線的對稱軸上,且AM平分∠OAC,求n的值.
(3)若P是線段AB上的一個動點(不與A、B重合),過P作PQ∥AC,與AB上方的拋物線交于點Q,與x軸交于點H,試問:是否存在這樣的點Q,使PH=2QH?若存在,請直接出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,在△ABC內一點P,已知∠1=∠2=∠3,將△BCP以直線PC為對稱軸翻折,使點B與點D重合,PD與AB交于點E,連結AD,將△APD的面積記為S1,將△BPE的面積記為S2,則的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點E是線段AB的中點,連接CE并延長交線段AD于點F.
(1)求證:四邊形BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com