【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當DM=1時,求MN的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由圓周角推論可得∠A+∠ABD=90°,由切線性質可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;
(2)由角平分線及三角形外角性質可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據勾股定理可求得MN的長.
試題解析:(1)如圖,連接OD,∵AB為⊙O的直徑,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD與⊙O相切于點D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;
(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==
.
科目:初中數學 來源: 題型:
【題目】在以下現象中,屬于平移的是( )
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點E是BC上一點,已知BE=4,tan∠AEB=,AB:BC=2:3,求圓的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線(m>0)與x軸的交點為A,B.
(1)求拋物線的頂點坐標;
(2)橫、縱坐標都是整數的點叫做整點.
①當m=1時,求線段AB上整點的個數;
②若拋物線在點A,B之間的部分與線段AB所圍成的區域內(包括邊界)恰有6個整點,結合函數的圖象,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com