【題目】如圖,在△ABC中,AB=AC,D是底邊BC的中點,作DE⊥AB于E,DF⊥AC于F
求證:DE=DF.
證明:∵AB=AC,∴∠B=∠C①.
在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF②.∴DE=DF③.
(1)上面的證明過程是否正確?若正確,請寫出①、②和③的推理根據.
(2)請你寫出另一種證明此題的方法.
科目:初中數學 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發,先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數據:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是正方形,∠PAQ=45°,將∠PAQ繞著正方形的頂點A旋轉,使它與正方形ABCD的兩個外角∠EBC和∠FDC的平分線分別交于點M和N,連接MN.
(1)求證:△ABM∽△NDA;
(2)連接BD,當∠BAM的度數為多少時,四邊形BMND為矩形,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數 y1=﹣2x 的圖象與反比例函數 y2=的圖象交于 A(﹣1,a),B 兩點.
(1)求出反比例函數的解析式及點 B 的坐標;
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點 P 是第四象限內反比例函數的圖象上一點,若△POB 的面積為 1,請直接寫出點 P的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數 y1=﹣2x 的圖象與反比例函數 y2=的圖象交于 A(﹣1,a),B 兩點.
(1)求出反比例函數的解析式及點 B 的坐標;
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點 P 是第四象限內反比例函數的圖象上一點,若△POB 的面積為 1,請直接寫出點 P的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】結合西昌市創建文明城市要求,某小區業主委員會決定把一塊長80m,寬60m的矩形空地建成花園小廣場,設計方案如圖所示,陰影區域為綠化區(四塊綠化區為全等的直角三角形),空白區域為活動區,且四周出口寬度一樣,其寬度不小于36m,不大于44m,預計活動區造價60元/m2,綠化區造價50元/m2,設綠化區域較長直角邊為xm.
(1)用含x的代數式表示出口的寬度;
(2)求工程總造價y與x的函數關系式,并直接寫出x的取值范圍;
(3)如果業主委員會投資28.4萬元,能否完成全部工程?若能,請寫出x為整數的所有工程方案;若不能,請說明理由.
(4)業主委員會決定在(3)設計的方案中,按最省錢的一種方案,先對四個綠化區域進行綠化,在實際施工中,每天比原計劃多綠化11m2,結果提前4天完成四個區域的綠化任務,問原計劃每天綠化多少m2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小巷左右兩側是豎直的墻,一架梯子AC斜靠在右墻,測得梯子頂端距離地面AB=2米,梯子與地面夾角α的正弦值sinα=0.8.梯子底端位置不動,將梯子斜靠在左墻時,頂端距離地面2.4米,則小巷的寬度為( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程(x-3)(x-5)=m(m>0)有兩個實數根,
(
<
),則下列選項正確的是( )
A. 3<<
<5 B. 3<
<5<
C.
<2<
<5 D.
<3且
>5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com