【題目】某商店選用甲、乙兩種糖果混合成雜拌糖果后出售,甲的價格為每千克 28 元,乙的價格為每千克 20 元,為使這種雜拌糖果的售價是每千克 25 元,要配置這種雜拌糖果 100 千克,問要用這兩種糖果各多少千克?
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角形ABC,AB=BC,直角頂點B在直線PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB與△BEC全等嗎?為什么?
(2)圖1中,AD、DE、CE有怎樣的等量關系?說明理由.
(3)將直線PQ繞點B旋轉到如圖2所示的位置,其他條件不變,那么AD,DE,CE有怎樣的等量關系?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察下列圖形與等式的關系,并填空
(2)觀察下圖,根據(1)中結論,計算圖中黑球的個數,用含有n的代數式填空:
1+3+5+…+(2n﹣1)+(______)+(2n﹣1)+…+5+3+1=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2015年全球葵花籽產量約為4200萬噸,比2014年上漲2.1%,某企業加工并銷售葵花籽,假設銷售量與加工量相等,在圖中,線段AB、折線CDB分別表示葵花籽每千克的加工成本y1(元)、銷售價y2(元)與產量x(kg)之間的函數關系;
(1)請你解釋圖中點B的橫坐標、縱坐標的實際意義;
(2)求線段AB所表示的y1與x之間的函數解析式;
(3)當0<x≤90時,求該葵花籽的產量為多少時,該企業獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
分解因式:x2+2x-3
解:原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此種方法抓住了二次項和一次項的特點,然后加一項,使這三項成為完全平方式,我們把這種分解因式的方法叫配方法.請仔細體會配方法的特點,然后嘗試用配方法解決下列問題:
(1)分解因式:m2-4mn+3n2;
(2)無論m取何值,代數式m2-3m+2015總有一個最小值,請你嘗試用配方法求出它的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學組織初一、初二學生舉行“四城同創”宣傳活動,從學校坐車出發,先上坡到達A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度保持不變,在A地仍要宣傳8分鐘,則他們從B地返回學校用的時間是( 。
A. 48分鐘 B. 45.2分鐘 C. 46分鐘 D. 33分鐘
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com