
解:(1)連接PC,過B作BN⊥x軸于點N.
∵PC=PA(⊙P的半徑),
∴∠1=∠2(等邊對等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=

=10(勾股定理),
∴OA=OB,
∴∠OBA=∠1(等邊對等角),
∴∠OBA=∠2(等量代換),

∴PC∥OB(同位角相等,兩直線平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD為⊙P的切線;
(2)如圖2,過B作BN⊥x軸于點N,設圓P的半徑為r.
∵⊙P與OB相切于點E,則OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=

=

,
在Rt△OBN中,sin∠BON=

=

=

,
∴

=

,
解得:r=

;

(3)①如圖3,∵由(2)知r=

,
∴在Rt△OPE中,OE=

=

=

(勾股定理),
∵∠PCD=∠CDE=∠PED=90°,
∴四邊形PCDE是矩形.
又∵PE=PC(⊙O的半徑),
∴矩形PCDE是正方形,
∴DE=DC=r=

,

∴BD=OB-OE-DE=10-

-

=

.
∵∠BFD=∠PFC,∠PEO=∠PCF=90°,
∴△BDF∽△PCF,
∴

=

,即

=

,
解得,CF=

,即CF的長度是

;
②假設在線段DE上是否存在點G使∠GPF=45°.
如圖4所示,在線段DE上截取EQ=EG.
∵OB⊥PE,
∴∠GQE=45°,
∴∠GQP=135°.
∵四邊形PCDE是正方形,
∴PD=

PC=

,∠EPD=∠PDC=45°,
∴∠2+∠3=45°.
∵∠FPG=45°,
∴∠1+∠2=45°
∴∠1=∠3
∵∠BDP=∠BDC+∠PDC=90°+45°=135°
∴∠GQP=∠BDP
∴△GQP∽△BDP
∴

=

∵OE=

,DE=

,OB=10,
∴BD=OB-ED-OE=

.
設EG=a,則GQ=

a,PQ=PE-EQ=

-a,
∴

=

,
解得,a=

,即EG的長度是

.
分析:(1)如圖1,連接PC,過B作BN⊥x軸于點N.欲證CD是⊙P的切線,只需證明PC⊥CD即可;
(2)如圖2,過B作BN⊥x軸于點N,設圓P的半徑為r.根據切線的性質知PE⊥OE,所以在Rt△OPE和Rt△OBN中,利用∠BON的正弦函數的定義列出關于r的比例式

=

,由此可以求得r的值;
(3)①如圖3,由正方形PCDE的四條邊相等知DE=DC=r,則BD=OB-OE-DE.然后將其代入相似三角形(△BDF∽△PCF)的對應邊成比例的比例式

=

中,從而求得CF的值;
②假設在線段DE上是否存在點G使∠GPF=45°.如圖4所示,在線段DE上截取EQ=EG.通過相似三角形:△GQP∽△BDP
,的對應邊成比例求得BD=

,然后將相關線段的長度代入該比例式來求線段EG的長度.
點評:本題考查了圓的綜合題.解題時,注意“數學結合”數學思想的應用.在證明(3)②時,巧妙的運用了旋轉的性質,切線的性質求得EG的長度.