【題目】如圖,已知△ABD和△CEF都是斜邊為2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直線上,DC=4.
(1)求證:四邊形ABFE是平行四邊形.
(2)△ABD沿著BE的方向以每秒1cm的速度運動,設△ABD運動的時間為t秒,
①當t為何值時,ABFE是菱形?請說明你的理由.
②ABFE有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.
【答案】
(1)
證明:∵已知△ABD和△CEF都是斜邊為2cm的全等直角三角形,
∴AB=EF,
∵∠ABD=∠FEC,
∴AB∥EF,又AB=EF,
∴四邊形ABFE是平行四邊形
(2)
①當t=4時,ABFE是菱形.
理由如下:∵△ABD沿著BE的方向以每秒1cm的速度運動,
4秒后,△ABD移動的距離為4÷1=4,又DC=4,
∴D與C重合,
∴AF⊥BE,又四邊形ABFE是平行四邊形,
∴四邊形ABFE是菱形;
②當四邊形ABFE是矩形時,∠BAE=90°,
∵∠ABD=60°,
∴∠BEA=30°,
∴BE=2AB=4,AE= =2
,
∵∠ABD=60°,AB=2,
∴BD=1,同理CE=1,
∴CD=4﹣1﹣1=2,
t=2÷1=2秒,矩形的面積=AB×AE=4 cm2
【解析】(1)根據全等三角形的性質得到AB=EF,根據平行線的判定定理證明AB∥EF,根據平行四邊形的判定定理證明結論;(2)①根據△ABD的移動速度和時間得到D與C重合,根據菱形的判定定理解答即可;②根據矩形的性質和正弦的定義求出BE,根據正切的定義求出AE,求出CD的長,得到t的值,根據矩形的面積公式求出面積.
【考點精析】掌握平行四邊形的判定與性質是解答本題的根本,需要知道若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.
科目:初中數學 來源: 題型:
【題目】為了保護環境,某開發區綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 | A型 | B型 |
價格(萬元/臺) | m | m﹣3 |
月處理污水量(噸/臺) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是射線CB上的動點,點F是射線CD上一點,且AF⊥AE,射線EF與對角線BD交于點G,與射線AD交于點M;
(1)當點E在線段BC上時,求證:△AEF∽△ABD;
(2)在(1)的條件下,聯結AG,設BE=x,tan∠MAG=y,求y關于x的函數解析式,并寫出x的取值范圍;
(3)當△AGM與△ADF相似時,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加快我省城鄉公路建設,我省計劃“十三五”期間高速公路運營里程達1000公里,進一步打造城鄉快速連接通道,某地計劃修建一條高速公路,需在小山東西兩側A,B之間開通一條隧道,工程技術人員乘坐熱氣球對小山兩側A、B之間的距離進行了測量,他們從A處乘坐熱氣球出發,由于受西風的影響,熱氣球以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側B點的俯角為30°,則小山東西兩側A、B兩點間的距離為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小穎媽媽的網店加盟了“小神龍”童裝銷售,有一款童裝的進價為60元/件,售價為100元/件,因為剛加盟,為了增加銷量,準備對大客戶制定如下“促銷優惠”方案: 若一次購買數量超過10件,則每增加一件,所有這一款童裝的售價降低1元/件,例如一次購買11件時,這11件的售價都為99元/件,但最低售價為80元/件,一次購買這一款童裝的售價y元/件與購買量x件之間的函數關系如圖.
(1)一次購買20件這款童裝的售價為元/件;圖中n的值為;
(2)設小穎媽媽的網店一次銷售x件所獲利潤為w元,求w與x之間的函數關系式;
(3)小穎通過計算發現:賣25件可以賺625元,而賣30件只賺600元,為了保證銷量越大利潤就越大,在其他條件不變的情況下,求最低售價應定為多少元/件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=x-1與反比例函數y= 的圖像交于點A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).
A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角△ABC中,∠B=30°,點O是△ABC的重心,連接CO并延長交AB于點E,過點E作EF⊥AB交BC于點F,連接AF交CE于點M,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com