【題目】已知a,b,c是△ABC的三邊,若a,b,c滿足a2-6a+b2-8b++25=0,則△ABC是_____________三角形;若a,b,c滿足a2+b2+c2-ab-bc-ac=0,則△ABC是_________三角形.
【答案】直角; 等邊.
【解析】
把25分成9、16,利用配方法把a2-6a+b2-8b++25=0改寫為(a-3)2+(b-4)2+
=0,利用非負數的性質求出a、b、c的值,根據勾股定理逆定理判斷即可;利用配方法把a2+b2+c2-ab-bc-ac=0改寫為(a-b)2+(b-c)2+(a-c)2=0,再利用非負數的性質,可分別求出a、b、c的的關系.
∵a2-6a+b2-8b++25=0,
∴(a-3)2+(b-4)2+=0,
∴a=3,b=4,c=5,
∵32+42=52,
∴△ABC是直角三角形;
∵a2+b2+c2-ab-bc-ac=0,
∴(a-b)2+(b-c)2+(a-c)2=0,
∴a=b,b=c,a=c,
∴a=b=c,
∴△ABC是等邊三角形.
故答案為:直角;等邊.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人從地前往
地,甲的速度是每小時80千米,乙的速度是甲的速度的1.5倍,甲比乙早出發0.5小時,結果甲比乙晚到1.5小時.
(1)求,
兩地的路程是多少千米?
(2)當甲到達地后,乙再與甲同時從
地按各自的原速返回
地,若他們由
地返回
地的過程中所行走路程的和為180千米,則甲走了多少小時?
(3)若乙到達地后立即按原速返回,問再經過多長時間甲與乙之間的距離為20千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點D是△ABC所在平面內一點,連接AD、CD.
(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關系并證明;
(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關系并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知單位長度為1的方格中有三角形ABC.
(1)請畫出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;
(2)請以點A為坐標原點建立平面直角坐標系(在圖中畫出),然后寫出點B,B′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標中,直線l:y=﹣2x+6分別交兩坐標于A、B兩點,M是級段AB上一個動點,設點M的橫坐標為x,△OMB的面積為S.
(1)寫出S與x的函數關系式;
(2)當△OMB的面積是△OAB面積的時,求點M的坐標;
(3)當△OMB是以OB為底的等腰三角形,求它的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,OP為一墻面,它與地面OQ垂直,有一根木棒AB如圖放置,點C是它的中點,現在將木棒的A點在OP上由A點向下滑動,點B由O點向OQ方向滑動,直到AB橫放在地面為止.
(1)在AB滑動過程中,點C經過的路徑可以用下列哪個圖象來描述( )
(2)若木棒長度為2m,如圖②射線OM與地面夾角∠MOQ=60°,當AB滑動過程中,與OM并于點D,分別求出當AD= 、AD=1、AD=
時,OD的值.
(3)如圖③,是一個城市下水道,下水道入口寬40cm,下水道水平段高度為40cm,現在要想把整根木棒AB通入下水道水平段進行工作,那么這根木棒最長可以是(cm)(直接寫出結果,結果四舍五入取整數).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com