精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為

【答案】x1=1,x2=﹣3
【解析】解:∵拋物線y=ax2+bx+c與x軸的一個交點是(1,0),對稱軸為直線x=﹣1,
∴拋物線y=ax2+bx+c與x軸的另一個交點是(﹣3,0),
∴方程ax2+bx+c=0(a≠0)的解為:x1=1,x2=﹣3.
所以答案是:x1=1,x2=﹣3.
【考點精析】根據題目的已知條件,利用拋物線與坐標軸的交點的相關知識可以得到問題的答案,需要掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1)①請畫出△ABC向左平移5個單位長度后得到的△A1B1C1
②請畫出△ABC關于原點對稱的△A2B2C2;
(2)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知等邊三角形ABC的邊長為12,點PAC上一點,點DCB的延長線上,且BD=AP,連接PDAB于點E,PEAB于點F,則線段EF的長為( 。

A. 6 B. 5

C. 4.5 D. AP的長度有關

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的三個頂點在邊長為1的正方形網格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).

(1)畫出△ABC關于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應點,不寫畫法);

(2)分別寫出A′,B′,C′三點的坐標;

(3)請寫出所有以AB為邊且與△ABC全等的三角形的第三個頂點(不與C重合)的坐標   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ABC=90°,O為射線BC上一點,以點O為圓心, OB長為半徑作⊙O,將射線BA繞點B按順時針方向旋轉至BA′,若BA′與⊙O相切,則旋轉的角度α(0°<α<180°)等于

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題滿分8分)

在一次運輸任務中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設汽車從甲地出發(h)時,汽車與甲地的距離為(km),的函數關系如圖所示.

根據圖象信息,解答下列問題:

(1)這輛汽車的往、返速度是否相同?請說明理由;

(2)求返程中之間的函數表達式;

(3)求這輛汽車從甲地出發4h時與甲地的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于二次函數y=﹣2x2+1,下列說法錯誤的是(
A.圖象開口向下
B.圖象的對稱軸為x=
C.函數最大值為1
D.當x>1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為一段圓弧形彎道,彎道長12π米,圓弧所對的圓心角是81°.
(1)用直尺和圓規作出圓弧所在的圓心O;(不寫作法,保留作圖痕跡)
(2)求這段圓弧的半徑R.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视