【題目】為調查本校學生對“關燈一小時”有關情況的了解程度.學校政教處隨機抽取部分同學進行了調查,將調查結果分為:“A—不太了解、B—基本了解、C—了解較多、D—非常了解”四個等級,依據相關數據繪制成如下兩幅統計圖.
(1)這次調查抽取了多少名學生?
(2)根據兩個統計圖提供的信息,補全這兩個統計圖;
(3)若該校有 3000 名學生,請你估計全校對“關燈一小時”非常了解的學生有多少名?
科目:初中數學 來源: 題型:
【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于A.B兩點,與y軸交于C,D兩點,點E為⊙G上一動點,CF⊥AE于F,點E在⊙G的運動過程中,線段FG的長度的最小值為( )
A.1B.2
-2C.3
D.3
3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結論:①abc>0;②9a+3b+c<0;③c>﹣1;④關于x的方程ax2+bx+c=0(a≠0)有一個根為1;其中正確的結論個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖三角形ABC,BC=12,AD是BC邊上的高AD=10.P,N分別是AB,AC邊上的點,Q,M是BC上的點,連接PQMN,PN交AD于E.求
(1)若四邊形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的長;
(2)若四邊形PQMN是矩形,求當矩形PQMN面積最大時,求最大面積和PQ、PN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形 AOBC 中,AC∥OB,且 OB=6,AC=5,OA=4.
(1)求 B、C 兩點的坐標;
(2)以 O、A、B、C 中的三點為頂點可組成哪幾個不同的三角形?
(3)是否在邊 AC 和 BC(含端點)上分別存在點 M 和點 N,使得△MON 的面積最大時,它的周長還最短?若存在,說明理由,并求出這時點 M、N 的坐標;若不存在,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=m(m為常數),點C為的中點,點D為圓上一動點,過A點作⊙O的切線交BD的延長線于點P,弦CD交AB于點E.
(1)當DC⊥AB時,則= ;
(2)①當點D在上移動時,試探究線段DA,DB,DC之間的數量關系;并說明理由;
②設CD長為t,求△ADB的面積S與t的函數關系式;
(3)當時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點E為蹦極項目的起跳點.已知點E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點E的仰角α=45°,從點C沿CB方向前行40米到達D點,在D處測得塔尖A的仰角β=60°,求點E離地面的高度EF.(結果精確到0.1米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線yx2bxc交x軸于點A,B,點B的坐標為(4,0),與y軸于交于點C(0,﹣2).
(1)求此拋物線的解析式;
(2)在拋物線上取點D,若點D的橫坐標為5,求點D的坐標及∠ADB的度數;
(3)在(2)的條件下,設拋物線對稱軸交x軸于點H,△ABD的外接圓圓心為M(如圖1),
①求點M的坐標及⊙M的半徑;
②過點B作⊙M的切線交于點P(如圖2),設Q為⊙M上一動點,則在點Q運動過程中
的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com