【題目】將矩形紙片按如圖的方式折疊,得到菱形
,若
,則
的長為( )
A. B.
C.
D.
【答案】D
【解析】
根據菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過折疊的性質,結合直角三角形勾股定理求解.
解:∵菱形AECF,AB=3,
∴假設BE=x,
∴AE=3-x,
∴CE=3-x,
∵四邊形AECF是菱形,
∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,
2BE=CE,
∴CE=2x,
∴2x=3-x,
解得:x=1,
∴CE=2,利用勾股定理得出:
BC2+BE2=EC2,
BC==
=
,
故選:D.
此題主要考查了折疊問題以及勾股定理等知識,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
科目:初中數學 來源: 題型:
【題目】如圖所示,在數軸上點表示的數分別為-2,0,6,點
與點
之間的距離表示為
,點
與點
之間的距離表示為
,點
與點
之間的距離表示為
.
(1)填空: ;
(2)點開始在數軸上運動,若點
以每秒1個單位長度的速度向左運動,同時,點
和點
分別以每秒2個單位長度,5個單位長度的速度向右運動.
①設運動時間為,請用含有
的算式分別表示出
;
②在①的條件下,的值是否隨著時間
的變化而變化?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 某學校為了改善辦學條件,計劃采購A,B兩種型號的空調,已知采購3臺A型空調和2臺B型空調共需3.9萬元;采購4臺A型空調比采購5臺B空調的費用多0.6萬元.
(1)求A型空調和B型空調每臺各需多少萬元;
(2)若學校計劃采購A,B兩種型號空調共30臺,且采購總費用不少于20萬元不足21萬元,請求出共有那些采購方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,如圖,則下列說法正確的有( 。﹤.
(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.
(1)求證:DF⊥AC;
(2)求tan∠E的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某地,人們發現在一定溫度下某種蟋蟀叫的次數與溫度之間有如下的近似關系:用蟋蟀1min叫的次數除以7,然后再加上3,就近似地得到該地當時的溫度(℃).
(1)用代數式表示該地當時的溫度;
(2)當蟋蟀1min叫的次數分別是84,105和126時,該地當時的溫度約是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲.乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價20元,乒乓球每盒定價5元.現兩家商店搞促銷活動,甲店的優惠辦法是:每買一副乒乓球拍贈一盒乒乓球;乙店的優惠辦法是:按定價的9折出售.某班需購買乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代數式表示(所填式子需化簡):當購買乒乓球的盒數為盒時,在甲店購買需付款 元;在乙店購買需付款 元.
(2)當購買乒乓球盒數為10盒時,到哪家商店購買比較合算?說出你的理由.
(3)當購買乒乓球盒數為10盒時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方案,并求出此時需付款幾元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,張明同學想測量某銅像的高度,已知銅像(圖中)高度比底座(圖中
)高度多1米,張明隨后用高度為1米的測角儀(圖中
)測得銅像頂端點
的仰角β=51°24′,底座頂端點
的仰角
=26°36′.請你幫助張明算出銅像AB的高度(把銅像和底座近似看在一條直線上它的抽象幾何圖形如左圖).(參考數據:sin26°36′≈0.45, cos26°36′≈0.89,tan26°36′≈0.5,sin51°24′≈0.78,cos51°24′≈0.6,tan51°24′≈1.25)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com