【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長.
【答案】(1)見解析;(2)見解析;(3)AG=5.
【解析】
(1)利用垂徑定理、平行的性質,得出OC⊥CG,得證CG是⊙O的切線.
(2)利用直徑所對圓周角為和垂直的條件得出∠2=∠B,再根據等弧所對的圓周角相等得出∠1=∠B,進而證得∠1=∠2,得證AF=CF.
(3)根據直角三角形的性質,求出AD的長度,再利用平行的性質計算出結果.
(1)證明:連結OC,如圖,
∵C是劣弧AE的中點,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切線;
(2)證明:連結AC、BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵C是劣弧AE的中點,
∴,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:∵CG∥AE,
∴∠FAD=∠G,
∵sinG=0.6,
∴sin∠FAD==0.6,
∵∠CDA=90°,AF=CF=4,
∴DF=2.4,
∴AD=3.2,
∴CD=CF+DF=6.4,
∵AF∥CG,
∴,
∴
∴DG=,
∴AG=DG﹣AD=5.
科目:初中數學 來源: 題型:
【題目】小軍自制的勻速直線運動遙控車模型甲、乙兩車同時分別從、
出發,沿直線軌道同時到達
處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與
處的距離
、
(米)與時間
(分鐘)的函數關系如圖所示,則下列結論中:①
的距離為120米;②乙的速度為60米/分;③
的值為
;④若甲、乙兩遙控車的距離不少于10米時,兩車信號不會產生互相干擾,則兩車信號不會產生互相干擾的
的取值范圍是
,其中正確的有( )個
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=2
,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“餃子“又名“交子”或者“嬌耳”,是新舊交替之意,它是重慶人民的年夜飯必吃的一道美食.今年除夕,小僑跟著媽媽一起包餃子準備年夜飯,體驗濃濃的團圓氣氛.已知小僑家共10人,平均每人吃10個餃子,計劃用10分鐘將餃子包完.
(1)若媽媽每分鐘包餃子的速度是小僑速度的2倍少2個,那么小僑每分鐘至少要包多少個餃子?
(2)小僑以(1)問中的最低速度,和媽媽同時開始包餃子,媽媽包餃子的速度在(1)問的最低速度基礎上提升了a%,在包餃子的過程中小僑外出耽誤了
分鐘,返家后,小僑與媽媽一起包完剩下的餃子,所用時間比原計劃少了
a%,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開展了“手機伴我健康行”主題活動.他們隨機抽取部分學生進行“手機使用目的”和“每周使用手機時間”的問卷調查,并繪制成如圖①②的統計圖。已知“查資料”人人數是40人。
請你根據以上信息解答以下問題
(1)在扇形統計圖中,“玩游戲”對應的圓心角度數是_______________。
(2)補全條形統計圖
(3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形中,
,
是
的中點.將
沿
對折至
,延長
交
于點
,連接
、
,則下列結論正確的有( )個.
(1) (2)
(3)的面積是18 (4)
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學對本校初2017屆500名學生中中考參加體育加試測試情況進行調查,根據男生1000米及女生800米測試成績整理,繪制成不完整的統計圖,(圖①,圖②),請根據統計圖提供的信息,回答下列問題:
(1)該校畢業生中男生有 人;扇形統計圖中a= ;
(2)補全條形統計圖;
(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一直線分別于
軸、
軸交于A、B兩點,點A、點D關于原點對稱,過點A的拋物線
與射線AB交于另一點C,若將
沿著CO所在的直線翻折得到
,
與
重疊部分的面積為
的
.
(1)求B、D兩點的坐標(用m的代數式表示).
(2)當落在拋物線上時,求二次函數的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com