【題目】甲、乙、丙、丁4位同學進行一次乒乓球單打比賽,要從中選2名同學打第一場比賽.
(1)已確定甲同學打第一場比賽,再從其余3名同學中隨機選取1名,恰好選中乙同學的概率是多少?;
(2)隨機選取2名同學,求其中有乙同學的概率.
【答案】
(1)解:已確定甲同學打第一場比賽,再從其余3名同學中隨機選取1名,恰好選中乙同學的概率= ;
故答案為 ;
(2)解:畫樹狀圖為:
共有12種等可能的結果數,其中選取2名同學中有乙同學的結果數為6,
所以有乙同學的概率= =
【解析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結果數,再找出選取2名同學中有乙同學的結果數,然后根據概率公式求解.
【考點精析】本題主要考查了列表法與樹狀圖法和概率公式的相關知識點,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發生的可能性都相等,事件A包含其中的m中結果,那么事件A發生的概率為P(A)=m/n才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計算結果精確到1m) (參考數據:sin15°= ,cos15°=
,tan15°=
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是( )
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當 =
時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+2的圖象經過點A(﹣1,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)若點Q(m,m﹣1)是拋物線上位于第一象限內的點,P是線段AB上的一個動點(不與A、B重合),經過點P分別作PD∥BQ交AQ于點D,PE∥AQ交BQ于點E. ①判斷四邊形PDQE的形狀;并說明理由;
②連接DE,求出線段DE的長度范圍;
③如圖2,在拋物線上是否存在一點F,使得以P、F、A、C為頂點的四邊形為平行四邊形?若存在,求出點F和點P坐標;若不存在,說明理由.
(3)當r=2 時,在P1(0,2),P2(﹣2,4),P3(4
,2),P4(0,2﹣2
)中,求可以成為正方形ABCD的“等距圓”的圓心的坐標?
(4)若點P坐標為(﹣3,6),則當⊙P的半徑r為多長時,⊙P是正方形ABCD的“等距圓”.試判斷此時⊙P與直線AC的位置關系?并說明理由.
(5)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營一批進價是30元/件的商品,在市場試銷中的日銷售量y件與銷售價x元之間滿足一次函數關系.
(1)請借助以下記錄確定y與x的函數關系式,并寫出自變量x的取值范圍;
x | 35 | 40 | 45 | 50 |
y | 57 | 42 | 27 | 12 |
(2)若日銷售利潤為P元,根據上述關系寫出P關于x的函數關系式,并指出當銷售單價x為多少元時,才能獲得最大的銷售利潤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F.若∠B=52°,∠DAE=20°,則∠FED′的大小為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發,則△BPQ的面積y與運動時間t(t≤4)的函數圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com