【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
【答案】(1)每臺電腦0.5萬元,每臺電子白板1.5萬元;(2)方案3最省錢,即購買電腦17臺,電子白板13臺最省
【解析】
試題分析:(1)先設每臺電腦x萬元,每臺電子白板y萬元,根據購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元列出方程組,求出x,y的值即可;
(2)先設需購進電腦a臺,則購進電子白板(30﹣a)臺,根據需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元列出不等式組,求出a的取值范圍,再根據a只能取整數,得出購買方案,再根據每臺電腦的價格和每臺電子白板的價格,算出總費用,再進行比較,即可得出最省錢的方案.
解:(1)設每臺電腦x萬元,每臺電子白板y萬元,根據題意得:
,
解得:,
答:每臺電腦0.5萬元,每臺電子白板1.5萬元;
(2)設需購進電腦a臺,則購進電子白板(30﹣a)臺,根據題意得:
,
解得:15≤a≤17,
∵a只能取整數,
∴a=15,16,17,
∴有三種購買方案,
方案1:需購進電腦15臺,則購進電子白板15臺,
方案2:需購進電腦16臺,則購進電子白板14臺,
方案3:需購進電腦17臺,則購進電子白板13臺,
方案1:15×0.5+1.5×15=30(萬元),
方案2:16×0.5+1.5×14=29(萬元),
方案3:17×0.5+1.5×13=28(萬元),
∵28<29<30,
∴選擇方案3最省錢,即購買電腦17臺,電子白板13臺最省錢.
科目:初中數學 來源: 題型:
【題目】已知,點E、F分別在直線AB,CD上,點P在AB、CD之間,連結EP、FP,如圖1,過FP上的點G作GH∥EP,交CD于點H,且∠1=∠2.
(1)求證:AB∥CD;
(2)如圖2,將射線FC沿FP折疊,交PE于點J,若JK平分∠EJF,且JK∥AB,則∠BEP與∠EPF之間有何數量關系,并證明你的結論;
(3)如圖3,將射線FC沿FP折疊,將射線EA沿EP折疊,折疊后的兩射線交于點M,當EM⊥FM時,求∠EPF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標是(-1,2),作點A關于y軸對稱得到點A′,再將點A′向上平移2個單位,得到點A′′,則點A′′的坐標是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若(x﹣2)(x+3)=x2+ax+b,則a,b的值分別為( )
A.a=5,b=﹣6
B.a=5,b=6
C.a=1,b=6
D.a=1,b=﹣6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com