【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
【答案】解:(1)證明:如圖,∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,4=∠6。
∵MN∥BC,∴∠1=∠5,3=∠6。
∴∠1=∠2,∠3=∠4。∴EO=CO,FO=CO。
∴OE=OF。
(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°。
∵CE=12,CF=5,∴。
∴OC=EF=6.5。
(3)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形。理由如下:
當O為AC的中點時,AO=CO,
∵EO=FO,∴四邊形AECF是平行四邊形。
∵∠ECF=90°,∴平行四邊形AECF是矩形。
【解析】(1)根據平行線的性質以及角平分線的性質得出∠1=∠2,∠3=∠4,進而得出答案。
(2)根據已知得出∠2+∠4=∠5+∠6=90°,進而利用勾股定理求出EF的長,即可根據直角三角形斜邊上的中線性質得出CO的長。
(3)根據平行四邊形的判定以及矩形的判定得出即可。
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:如圖,點A、B在數軸上分別表示有理數a、b,則A、B兩點之間的距離可以表示為|a﹣b|.
根據閱讀材料與你的理解回答下列問題:
(1)數軸上表示3與﹣2的兩點之間的距離是 .
(2)數軸上有理數x與有理數7所對應兩點之間的距離用絕對值符號可以表示為 .
(3)代數式|x+8|可以表示數軸上有理數x與有理數 所對應的兩點之間的距離;若|x+8|=5,則x= .
(4)求代數式|x+1008|+|x+504|+|x﹣1007|的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運動,E、F分別是AC、BD的中點.
(1)若AC=4cm,則EF=_________cm.
(2)當線段CD在線段AB上運動時,試判斷EF的長度是否發生變化?如果不變請求出EF的長度,如果變化,請說明理由.
(3)我們發現角的很多規律和線段一樣,如圖②已知在
內部轉動,OE、OF分別平分
在
,則
、
和
有何關系,請直接寫出_______________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答下列問題:
(1)一項工程,甲隊單獨做需10天完成,乙隊單獨做需15天完成,甲先做5天后,甲、乙合作完成余下的工作,問兩隊合做幾天可以完成這項工作?
(2)從A地到B地,甲需走10小時,從B地到A地,乙需走15小時,甲、乙兩人從A,B兩地相向而行,甲出發5小時后乙出發,問乙出發幾小時后兩人相遇?
(3)一筆錢款,可以買甲種商品10件或買乙種商品15件,用這筆錢款買了甲、乙兩種商品,已知甲種商品比乙種商品多買了5件,問乙種商品買了幾件?
(4)通過解答上面三個問題,你發現了什么?
(5)根據上面所列的方程,編寫一道實際問題的應用題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B兩城市相距80km,現計劃在這兩座城市間修建一條高速公路(即線段AB),經測量,森林保護中心P在A城市的北偏東30°和B城市的北偏西45°的方向上,已知森林保護區的范圍在以P點為圓心,50km為半徑的圓形區域內,請問計劃修建的這條高速公路會不會穿越保護區,為什么?(參考數據: ≈1.732,
≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中央電視臺的“朗讀者”節目激發了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對七年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發現,學生課外閱讀的本數最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如下所示:
(1)統計表中的a= ,b= ,c= ;
(2)請將頻數分布表直方圖補充完整;
(3)求所有被調查學生課外閱讀的平均本數;
(4)若該校七年級共有1200名學生,請你分析該校七年級學生課外閱讀7本及以上的人數.
本數(本) | 頻數(人數) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計 | c | 1 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個正整數n都可以進行這樣的分解:n=p×q(p,q是正整數,且p≤q),在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解.并規定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=
.
(Ⅰ)如果一個正整數m是另外一個正整數n的平方,我們稱正整數m是完全平方數.
求證:對任意一個完全平方數m,總有F(m)=1;
(Ⅱ)如果一個兩位正整數t,t=10x+y(1≤x≤y≤9,x,y為自然數),交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為36,那么我們稱這個數t為“吉祥數”,求所有“吉祥數”;
(Ⅲ)在(2)所得“吉祥數”中,求F(t)的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com