精英家教網 > 初中數學 > 題目詳情

【題目】作圖題:(不寫作法,但必須保留作圖痕跡)

如圖:某地有兩所大學和兩條相交叉的公路,(點M,N表示大學,AO,BO表示公路).現計劃修建一座物資倉庫,希望倉庫到兩所大學的距離相等,到兩條公路的距離也相等.你能確定倉庫P應該建在什么位置嗎?在所給的圖形中畫出你的設計方案.

【答案】見解析

【解析】

先連接MN,根據線段垂直平分線的性質作出線段MN的垂直平分線DE,再作出∠AOB的平分線OF,DEOF相交于P點,則點P即為所求.

解:如圖所示:

1)連接MN,分別以M、N為圓心,以大于MN為半徑畫圓,兩圓相交于DE,連接DE,則DE即為線段MN的垂直平分線;

2)以O為圓心,以任意長為半徑畫圓,分別交OAOBG、H,再分別以G、H為圓心,以大于GH為半徑畫圓,兩圓相交于F,連接OF,則OF即為∠AOB的平分線(或∠AOB的外角平分線);

3DEOF相交于點P,則點P即為所求.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)如圖,若,將點內部,∠,∠,∠滿足的數量關系是   ,并說明理由.

(2)在如圖1中,將直線繞點逆時針方向旋轉一定角度交直線于點,如圖2,利用(1)中的結論(可以直接套用),求∠﹑∠﹑∠﹑∠之間有何數量關系?

(3)科技活動課上,雨軒同學制作了一個圖(3)的“飛旋鏢”,經測量發現∠°,∠°,則∠與∠的數量關系是 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、B在反比例函數 的圖象上,且點A、B的橫坐標分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,

(1)求該反比例函數的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AE交BC于點D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,﹣1),B(﹣1,1),C(0,﹣2).

(1)寫出點B關于坐標原點O對稱的點B1的坐標;
(2)將△ABC繞點C順時針旋轉90°,畫出旋轉后得到的△A1B1C;
(3)求過點B1的正比例函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】乘法公式的探究及應用.

(1)如圖1,可以求出陰影部分的面積是 (寫成兩數平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達);

(4)運用你所得到的公式,計算下列各題:

①(2m+n-p)(2m-n+p);②10.3×9.7.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(背景介紹)勾股定理是幾何學中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者.向常春在1994年構造發現了一個新的證法.

(小試牛刀)把兩個全等的直角三角形如圖1放置,其三邊長分別為ab、c.顯然,∠DAB=B=90°,ACDE.請用a、bc分別表示出梯形ABCD、四邊形AECD、EBC的面積,再探究這三個圖形面積之間的關系,可得到勾股定理:

S梯形ABCD= ,

SEBC= ,

S四邊形AECD= ,

則它們滿足的關系式為 ,經化簡,可得到勾股定理.

(知識運用)(1)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,CD為兩個村莊(看作兩個點),ADAB,BCAB,垂足分別為A、BAD=25千米,BC=16千米,則兩個村莊的距離為 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個供應站P,使得PC=PD,請用尺規作圖在圖2中作出P點的位置并求出AP的距離.

(知識遷移)借助上面的思考過程與幾何模型,求代數式最小值(0x16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,.說明的理由.

解:∵(已知),

________//_______________________

_______________

________),

_______________

(己證),

_______________).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视