分析 延長AN、AM分別交BC于點D、G,根據BM為∠ABC的角平分線,AM⊥BM得出∠BAM=∠G,故△ABG為等腰三角形,所以BM也為等腰三角形的中線,即AM=GM.同理AN=DN,根據三角形中位線定理即可得出結論.
解答 證明:延長AN、AM分別交BC于點D、G.如圖所示:
∵BM為∠ABC的角平分線,
∴∠CBM=∠ABM,
∵BM⊥AG,
∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,
∴∠BAM=∠G,
∴△ABG為等腰三角形,
∴BM也為等腰三角形的中線,即AM=GM.
同理AN=DN,
∴MN為△ADG的中位線,
∴MN∥BC.
點評 本題考查了等腰三角形的判定與性質、三角形中位線定理,熟知三角形的中位線平行于第三邊,并且等于第三邊的一半是解答此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 600 | 300 | 200 | 150 | 120 | 100 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com