【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+與y軸相交于點A,點B與點O關于點A對稱
(1)填空:點B的坐標是 ;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.
【答案】(1)(0,);(2)點P在拋物線上,理由詳見解析;(3)P點坐標為(
,1).
【解析】
試題分析:(1)由拋物線解析式可求得點A的坐標,再利用對稱可求得B點坐標;(2)可先用k表示出C點坐標,過B作BD⊥l于點D,條件可知P點在x軸上方,設P點縱坐標為y,可表示出PD、PB的長,在Rt△PBD中,利用勾股定理可求得y,則可求出PB的長,此時可得出P點坐標,代入拋物線解析式可判斷P點在拋物線上;(3)利用平行線和軸對稱的性質可得到∠OBC=∠CBP=∠C′BP=60°,則可求得OC的長,代入拋物線解析式可求得P點坐標.
試題解析:(1)∵拋物線y=x2+與y軸相交于點A,
∴A(0,),
∵點B與點O關于點A對稱,
∴BA=OA=,
∴OB=,即B點坐標為(0,
),
故答案為:(0,);
(2)∵B點坐標為(0,),
∴直線解析式為y=kx+,令y=0可得kx+
=0,解得x=﹣
,
∴OC=﹣,
∵PB=PC,
∴點P只能在x軸上方,
如圖1,過B作BD⊥l于點D,設PB=PC=m,
則BD=OC=﹣,CD=OB=
,
∴PD=PC﹣CD=m﹣,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,
即m2=(m﹣)2+(﹣
)2,解得m=
+
,
∴PB=+
,
∴P點坐標為(﹣,
+
),
當x=﹣時,代入拋物線解析式可得y=
+
,
∴點P在拋物線上;
(3)如圖2,連接CC′,
∵l∥y軸,
∴∠OBC=∠PCB,
又PB=PC,
∴∠PCB=∠PBC,
∴∠PBC=∠OBC,
又C、C′關于BP對稱,且C′在拋物線的對稱軸上,即在y軸上,
∴∠PBC=∠PBC′,
∴∠OBC=∠CBP=∠C′BP=60°,
在Rt△OBC中,OB=,則BC=1
∴OC=,即P點的橫坐標為
,代入拋物線解析式可得y=(
)2+
=1,
∴P點坐標為(,1).
科目:初中數學 來源: 題型:
【題目】李老師給同學們布置了以下解方程的作業,作業要求是無實數根的方程不用解,不用解的方程是( 。
A.x2﹣x=0B.x2+x=0C.x2+x﹣1=0D.x2+1=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若H是AC的中點,連接MH.
(1)求證:MH為⊙O的切線.
(2)若MH=,tan∠ABC=
,求⊙O的半徑.
(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQ⊥BC,垂足為E,且交⊙O于Q點,求線段NQ的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學校開展的“愛我中華”的一次演講比賽中,編號1,2,3,4,5,6的五位同學最后成績如表所示.那么這五位同學演講成績的眾數與中位數依次是( )
參賽者編號 | 1 | 2 | 3 | 4 | 5 | 6 |
成績/分 | 95 | 88 | 90 | 93 | 88 | 92 |
A. 92,88 B. 88,90 C. 88,92 D. 88,91
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,是真命題的是( )
A.對角線互相垂直的四邊形是菱形B.對角形相等的四邊形是矩形
C.順次連結平行四邊形各邊中點所得四邊形是平行四邊形D.一組鄰邊相等的平行四邊形是正方形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com