精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,DB=DC,∠C的度數比∠ABD的度數大54°,AE⊥BD于點E,則∠DAE的度數等于

【答案】12°
【解析】解:設∠C=x,則∠ABD=x﹣54°, ∵DB=CD,
∴∠C=∠DBC=x°,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴∠ABC+∠C=180°,
∴x+x+x﹣54°=180°,
∴x=78,
即∠C=∠DBC=78°,
∵AD∥BC,
∴∠ADB=∠DBC=78°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE=180°﹣90°﹣78°=12°,
所以答案是:12°.
【考點精析】解答此題的關鍵在于理解平行四邊形的性質的相關知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCB=90°,AB=8 cm,AD=24 cm,BC=26 cm.點PA出發,以1 cm/s的速度向點D運動,點Q從點C同時出發,以3 cm/s的速度向點B運動,規定其中一個動點到達端點時,另一個動點也隨之停止運動.從運動開始,使PQCD需要__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明:如圖,點D,EF分別是三角形ABC的邊BC,CAAB上的點,連接DE,DFDEAB,∠BFD=∠CED,連接BEDF于點G,求證:∠EGF+∠AEG180°.

證明:∵DEAB(已知),

∴∠A=∠CED   

又∵∠BFD=∠CED(已知),

∴∠A=∠BFD   

DFAE   

∴∠EGF+∠AEG180°(   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了倡導“節約用水,從我做起”,南沙區政府決定對區直屬機關300戶家庭的用水情況作一次調查,區政府調查小組隨機抽查了其中50戶家庭一年的月平均用水量(單位:噸),調查中發現每戶用水量均在10﹣14噸/月范圍,并將調查結果制成了如圖所示的條形統計圖.

(1)請將條形統計圖補充完整;

(2)這50戶家庭月用水量的平均數是 ,眾數是 ,中位數是

(3)根據樣本數據,估計南沙區直屬機關300戶家庭中月平均用水量不超過12噸的約有多少戶?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,線段ABBC于點B,CDBC于點C,點E在線段BC上,且AEDE.

(1)求證:∠EAB=CED;

(2)如圖2,AF、DF分別平分∠BAE和∠CDE,EH平分∠DECCD于點H,EH的反向延長線交AF于點G.

①求證EGAF;

②求∠F的度數.(提示:三角形內角和等于180度)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,聯結DF,MN分別為DF,EF的中點,聯結MA,MN.

(1)如圖1,點EF分別在正方形的邊CB,AB上,請判斷MA,MN的數量關系和位置關系,直接

寫出結論;

(2)如圖2,EF分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結論還成立嗎?若立,請加以證明;若不成立,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA為⊙O的切線,A為切點,過A作OP的垂線AB,垂足為點C,交⊙O于點B,延長BO與⊙O交于點D,與PA的延長線交于點E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE= ,求sin∠E.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點,且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個頂點A處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.

(1)如果D是棱的中點,蜘蛛沿“AD→DB”路線爬行,它從A點爬到B點所走的路程為多少?

(2)你認為“AD→DB”是最短路線嗎?如果你認為不是,請計算出最短的路程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视