精英家教網 > 初中數學 > 題目詳情

【題目】【發現】如圖∠ACB=∠ADB=90°,那么點D在經過A,B,C三點的圓上(如圖①)

(1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經過A,B,C三點的圓上嗎?
請證明點D也不在⊙O內.
(2)【應用】
利用【發現】和【思考】中的結論解決問題:
若四邊形ABCD中,AD∥BC,∠CAD=90°,點E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點F(如圖④),求證:DF為Rt△ACD的外接圓的切線;

(2)如圖⑤,點G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.

【答案】
(1)

解:【思考】如圖1,

假設點D在⊙O內,延長AD交⊙O于點E,連接BE,則∠AEB=∠ACB,

∵∠ADE是△BDE的外角,

∴∠ADB>∠AEB,

∴∠ADB>∠ACB,

因此,∠ADB>∠ACB這與條件∠ACB=∠ADB矛盾,

所以點D也不在⊙O內,

所以點D即不在⊙O內,也不在⊙O外,點D在⊙O上


(2)

【應用】

(1)如圖2,取CD的中點O,則點O是RT△ACD的外心,

∵∠CAD=∠DEC=90°,

∴點E在⊙O上,

∴∠ACD=∠AED,

∵∠FDA=∠AED,

∴∠ACD=∠FDA,

∵∠DAC=90°,

∴∠ACD+∠ADC=90°,

∴∠FDA+∠ADC=90°,

∴OD⊥DF,

∴DF為Rt△ACD的外接圓的切線;

(2)∵∠BGE=∠BAC,

∴點G在過C、A、E三點的圓上,如圖3,

又∵過C、A、E三點的圓是RT△ACD的外接圓,即⊙O,

∴點G在⊙O上,

∵CD是直徑,

∴∠DGC=90°,

∵AD∥BC,

∴∠ADG=90°

∵∠DAC=90°

∴四邊形ACGD是矩形,

∴DG=AC,

∵sin∠AED=,∠ACD=∠AED,

∴sin∠ACD=,

在RT△ACD中,AD=1,

∴CD=,

∴AC==,

∴DG=


【解析】【思考】假設點D在⊙O內,利用圓周角定理及三角形外角的性質,可證得與條件相矛盾的結論,從而證得點D不在⊙O內;
【應用】(1)作出RT△ACD的外接圓,由發現可得點E在⊙O上,則證得∠ACD=∠FDA,又因為∠ACD+∠ADC=90°,于是有∠FDA+∠ADC=90°,即可證得DF是圓的切線;
(2)根據【發現】和【思考】可得點G在過C、A、E三點的圓O上,進而易證四邊形ACGD是矩形,根據已知條件解直角三角形ACD可得AC的長,即DG的長.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.

(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉,旋轉角為α(0°<α<180°)

(1)當∠BAC=60°時,將BP旋轉到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數量關系是_____;

(2)當∠BAC=120°時,將BP旋轉到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續旋轉,當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數量關系(不必證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若BD=,則∠ACD= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】活動1:
在一只不透明的口袋中裝有標號為1,2,3的3個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(1)活動1:
在一只不透明的口袋中裝有標號為1,2,3的3個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(2)活動2:
在一只不透明的口袋中裝有標號為1,2,3,4的4個小球,這些球除標號外都相同,充分攪勻,請你對甲、乙、丙三名同學規定一個摸球順序: , 他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,則第一個摸球的同學勝出的概率等于 ,最后一個摸球的同學勝出的概率等于
(3)猜想:
在一只不透明的口袋中裝有標號為1,2,3,…,n(n為正整數)的n個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三名同學從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:這三名同學每人勝出的概率之間的大小關系.
你還能得到什么活動經驗?(寫出一個即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數進行了統計,并繪制成統計圖.

(1)這50名同學捐款的眾數為 元,中位數為 元。
(2)求這50名同學捐款的平均數。
(3)該校共有600名學生參與捐款,請估計該校學生的捐款總數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發,沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市為促銷,決定對A,B兩種商品進行打折出售.打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元;打折后,買50件A商品和40件B商品僅需364元,這比打折前少花多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=2,則FM的長為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视