精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形ABCD中,AB4,AD3ABAD ,BC12

1)求BD的長;

2)當CD為何值時,BDC是以CD為斜邊的直角三角形?

3)在(2)的條件下,求四邊形ABCD的面積.

【答案】1BD的長度是5;(2CD13時△BDC為直角三角形;(3)四邊形ABCD的面積是36.

【解析】

1)在直角ABD中,利用勾股定理求得BD的長度;
2)利用勾股定理的逆定理求得CD的值;
3)四邊形ABCD的面積由兩個直角三角形組成,利用三角形的面積公式解答.

1)如圖,∵AB4AD3,ABAD

BD5,即BD的長度是5;

2)在直角BCD中,BD5BC12

因為CD為斜邊,CD13

CD13BDC為直角三角形;

3S四邊形ABCD的面積SABD+SBCDABADBDBC5×1236

綜上所述,四邊形ABCD的面積是36

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查根據調在結果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統計圖.

根據以上信息,解答下列問題:

這次調查一共抽取了多少名學生?

請將條形統計圖補充完整;

若該校有1800名學生,現要對安全意識為淡薄”、“一般的學生強化安全教育,根據調查結果,請你估計全校需要強化安全教育的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AC8,AB10ABC的面積為30,AD平分∠BACF、E分別為AC、AD上兩動點,連接CE、EF,則CEEF的最小值為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長BA交圓于E.

(1)若ED與⊙A相切,試判斷GD與⊙A的位置關系,并證明你的結論;

(2)在(1)的條件不變的情況下,若GC=CD,求∠C.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,東營市某中學利用周末時間開展了“助老助殘、社區服務、生態環保、網絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數據后,繪制以下不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:

(1)求該班的人數;

(2)請把折線統計圖補充完整;

(3)求扇形統計圖中,網絡文明部分對應的圓心角的度數;

(4)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象經過點(-2,0),(x0,0),1<x0<2,與y軸的負半軸相交,且交點在(0,-2)的上方,下列結論:①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結論的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等,直線y=3x-7與這條拋物線交于兩點,其中一點橫坐標為4,另一點是這條拋物線的頂點M.

(1)求頂點M的坐標.

(2)求這條拋物線對應的函數解析式.

(3)P為線段BM上一點(P不與點B,M重合),作PQ⊥x軸于點Q,連接PC,設OQ=t,四邊形PQAC的面積為S,求S與t的函數解析式,并直接寫出t的取值范圍.

(4)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據市場調查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,AC5,DABDCB90°,則四邊形ABCD的面積為( )

A.25B.12.5C.5D.10

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视