精英家教網 > 初中數學 > 題目詳情
(2012•寧波)如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=2
2
,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F,連接EF,則線段EF長度的最小值為
3
3
分析:由垂線段的性質可知,當AD為△ABC的邊BC上的高時,直徑AD最短,此時線段EF=2EH=20E•sin∠EOH=20E•sin60°,當半徑OE最短時,EF最短,連接OE,OF,過O點作OH⊥EF,垂足為H,在Rt△ADB中,解直角三角形求直徑AD,由圓周角定理可知∠EOH=
1
2
∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂徑定理可知EF=2EH.
解答:解:由垂線段的性質可知,當AD為△ABC的邊BC上的高時,直徑AD最短,
如圖,連接OE,OF,過O點作OH⊥EF,垂足為H,
∵在Rt△ADB中,∠ABC=45°,AB=2
2

∴AD=BD=2,即此時圓的直徑為2,
由圓周角定理可知∠EOH=
1
2
∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE•sin∠EOH=1×
3
2
=
3
2
,
由垂徑定理可知EF=2EH=
3

故答案為:
3
點評:本題考查了垂徑定理,圓周角定理,解直角三角形的綜合運用.關鍵是根據運動變化,找出滿足條件的最小圓,再解直角三角形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•寧波)如圖,在△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經過點E,交BC于點F.
(1)求證:AC是⊙O的切線;
(2)已知sinA=
12
,⊙O的半徑為4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寧波)如圖,已知一次函數與反比例函數的圖象交于點A(-4,-2)和B(a,4).
(1)求反比例函數的解析式和點B的坐標;
(2)根據圖象回答,當x在什么范圍內時,一次函數的值大于反比例函數的值?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寧波)如圖是某物體的三視圖,則這個物體的形狀是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寧波)如圖,二次函數y=ax2+bx+c的圖象交x軸于A(-1,0),B(2,0),交y軸于C(0,-2),過A,C畫直線.
(1)求二次函數的解析式;
(2)點P在x軸正半軸上,且PA=PC,求OP的長;
(3)點M在二次函數圖象上,以M為圓心的圓與直線AC相切,切點為H.
①若M在y軸右側,且△CHM∽△AOC(點C與點A對應),求點M的坐標;
②若⊙M的半徑為
4
5
5
,求點M的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视