精英家教網 > 初中數學 > 題目詳情

如圖,在直角坐標平面內,直線軸和軸分別交于A、B兩點,二次函數的圖象經過點A、B,且頂點為C.

(1)求這個二次函數的解析式;
(2)求的值;
(3)若P是這個二次函數圖象上位于軸下方的一點,且ABP的面積為10,求點P的坐標.

(1)
(2)
(3)P(4,-3)

解析試題分析:(1)根據直線方程求得點A、B的坐標;然后把點A、B的坐標代入二次函數解析式,通過方程組來求系數b、c的值;
(2)如圖,過點C作CH⊥x軸交x軸于點H,構建等腰△AOC.則∠OAC=∠OCA,故sin∠OCA=sin∠OAC=.
(3)如圖,過P點作PQ⊥x軸并延長交直線y=-x+5于Q.設點P(m,m2-6m+5),Q(m,-m+5),則PQ=-m+5-(m2-6m+5)=-m2+5m.由SABP=SPQB+SPQA得到:10=(?m2+5m)×5,則易求m的值.注意點P位于第四象限.
試題解析:
解:(1)由直線得點B(0,5),A(5,0),
將A、B兩點的坐標代入,得,解得
∴拋物線的解析式為 
(2)過點C作交x軸于點H
配方得∴點C(3,-4),
∴CH=4,AH=2,AC=∴OC=5,
∵OA=5∴OA=OC∴
=
(3)過P點作PQx軸并延長交直線于Q
設點P),Q(m,-m+5)
=



 
∴P(1,0)(舍去),P(4,-3)
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

拋物線y=2x2的對稱軸為               

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.點P從點A出發,以5cm/s的速度從點A運動到終點B;同時,點Q從點C出發,以3cm/s的速度從點C運動到終點B,連結PQ;過點P作PD⊥AC交AC于點D,將△APD沿PD翻折得到△A′PD,以A′P和PB為鄰邊作?A′PBE,A′E交射線BC于點F,交射線PQ于點G.設?A′PBE與四邊形PDCQ重疊部分圖形的面積為Scm2,點P的運動時間為ts.
(1)當t為何值時,點A′與點C重合;
(2)用含t的代數式表示QF的長;
(3)求S與t的函數關系式;
(4)請直接寫出當射線PQ將?A′PBE分成的兩部分圖形的面積之比是1:3時t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

“丹棱凍粑”是眉山著名特色小吃,產品暢銷省內外,現有一個產品銷售點在經銷時發現:如果每箱產品盈利10元,每天可售出50箱;若每箱產品漲價1元,日銷售量將減少2箱.
(1)現該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產品應漲價多少元?
(2)若該銷售點單純從經濟角度考慮,每箱產品應漲價多少元才能獲利最高?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,在平面直角坐標系xOy中,點M為拋物線的頂點,過點(0,4)作x軸的平行線,交拋物線于點P、Q(點P在Q的左側),PQ=4.
(1)求拋物線的函數關系式,并寫出點P的坐標;
(2)小麗發現:將拋物線繞著點P旋轉180°,所得新拋物線的頂點恰為坐標原點O,你認為正確嗎?請說明理由;
(3)如圖2,已知點A(1,0),以PA為邊作矩形PABC(點P、A、B、C按順時針的方向排列),
①寫出C點的坐標:C(       ,       )(坐標用含有t的代數式表示);
②若點C在題(2)中旋轉后的新拋物線上,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一次函數y=x–3的圖象與軸,軸分別交于點.一個二次函數y=x2+bx+c的圖象經過點
(1)求點的坐標,并畫出一次函數y=x–3的圖象;
(2)求二次函數的解析式并求其圖像頂點C的坐標.
(3)求的面積。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

今年5月1日起實施《青海省保障性住房準入分配退出和運營管理實施細則》規定:公共租賃住房和廉租住房并軌運行(以下簡稱并軌房),計劃10年內解決低收入人群住房問題.已知第x年(x為正整數)投入使用的并軌房面積為y百萬平方米,且y與x的函數關系式為y=-x+5.由于物價上漲等因素的影響,每年單位面積租金也隨之上調.假設每年的并軌房全部出租完,預計第x年投入使用的并軌房的單位面積租金z與時間x滿足一次函數關系如下表:

時間x(單位:年,x為正整數)
 
1
 
2
 
3
 
4
 
5
 

 
單位面積租金z(單位:元/平方米)
 
50
 
52
 
54
 
56
 
58
 
 
 
 
(1)求出z與x的函數關系式;
(2)設第x年政府投入使用的并軌房收取的租金為W百萬元,請問政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線y=x+m與拋物線y=x2-2x+l交于不同的兩點M、N(點M在點N的左側).
(1)設拋物線的頂點為B,對稱軸l與直線y=x+m的交點為C,連結BM、BN,若S△MBC=S△NBC,求直線MN的解析式;
(2)在(1)條件下,已知點P(t,0)為x軸上的一個動點,
①若△PMN為直角三角形,求點P的坐標.
②若∠MPN>90°,則t的取值范圍是     

查看答案和解析>>

科目:初中數學 來源: 題型:計算題

如圖所示,已知平面直角坐標系xOy,拋物線過點A(4,0)、B(1,3)

【小題1】求該拋物線的表達式,并寫出該拋物線的對稱軸和頂點坐標;
【小題2】記該拋物線的對稱軸為直線l,設拋物線上的點P(m,n)在第四象限,點P關于直線l的對稱點為E,點E關于y軸的對稱點為F,若四邊形OAPF的面積為20,求m、n的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视